a((oneer

A121 Distance Detector

User Guide

((O
A121 Distance Detector

A121 Distance Detector

User Guide

Author: Acconeer AB

Version:al21-v1.12.0

Acconeer AB October 15, 2025

© 2025 by Acconeer AB - All rights reserved Page 2 of 16

A121 Distance Detector

Contents

S

1 Acconeer SDK Documentation Overview

2 Distance Detector
2.1 Introduction e e
22 Distance Filter L
2.3 SUDSWEEDPS . .« v v e e e e e e e e e
24 Thresholds e e
2.5 Reflector Shape L
2.6 Reflector Strength L
277 Peak Sorting e
2.8 Detector Calibration L e
2.9 Detector Calibration Update
2.10 Temperature Compensation (Recorded Threshold)
201 Result o e e e
2.12 Hints and Recommendations L e

OO VXTI IIAIISTAANO

3 CAPI 12
3.1 Calibration e e e e e e e e e e 12
32 ProCess i e 13
33 MEMOTY . . . o o o e e e e e e e e e e 14
3.4 Power Consumption it e e e e e e e e e e e e e e e e 14

4 Configuration Parameters 15

5 Disclaimer 16

© 2025 by Acconeer AB - All rights reserved Page 3 of 16

A121 Distance Detector

1 Acconeer SDK Documentation Overview

To better understand what SDK document to use, a summary of the documents are shown in the table below.

Table 1: SDK document overview.

Name | Description | When to use
RSS API documentation (html)
rss_api The complete C API documentation. - RSS application implementation

- Understanding RSS API functions

User guides (PDF)

A121 Assembly Test

Describes the Acconeer assembly
test functionality.

- Bring-up of HW/SW
- Production test implementation

A121 Breathing
Reference Application

Describes the functionality of the
Breathing Reference Application.

- Working with the Breathing
Reference Application

A121 Distance Detector

Describes usage and algorithms
of the Distance Detector.

- Working with the Distance Detector

A121 SW Integration

Describes how to implement each
integration function needed to use
the Acconeer sensor.

- SW implementation of
custom HW integration

A121 Presence Detector

Describes usage and algorithms
of the Presence Detector.

- Working with the Presence Detector

A121 Smart Presence
Reference Application

Describes the functionality of the
Smart Presence Reference Application.

- Working with the Smart Presence
Reference Application

A121 Sparse 1Q Service

Describes usage of the Sparse 1Q
Service.

- Working with the Sparse IQ Service

A121 Tank Level
Reference Application

Describes the functionality of the
Tank Level Reference Application.

- Working with the Tank Level
Reference Application

A121 Touchless Button
Reference Application

Describes the functionality of the

Touchless Button Reference Application.

- Working with the Touchless Button
Reference Application

A121 Parking
Reference Application

Describes the functionality of the
Parking Reference Application.

- Working with the Parking
Reference Application

Describes the flow of taking an

Al121 STM32CubelDE Acconeer SDK and integrate into - Using STM32CubelDE
STM32CubelDE.
. Describes how to develop for . . .
A121 Raspberry Pi Software Raspberry Pi. - Working with Raspberry Pi
. Describes how to develop for - Working with Ripple
A121 Ripple Ripple. on Raspberry Pi

A121 ESP32 User Guide

Describes how to develop with
A121 and ESP32 targets.

- Working with ESP32 targets

Describes how to develop for

XM125 Software XM125. - Working with XM 125
Describes how to develop for . .
XM126 Software XM126. - Working with XM 126
. Describes the functionality of the - Working with the
12€ Distance Detector 12C Distance Detector Application. 12C Distance Detector Application
I2C Presence Detector Describes the functionality of the - Working with the
12C Presence Detector Application. 12C Presence Detector Application
. L Describes the functionality of the - Working with the
I2C Breathing Reference Application 12C Breathing Reference Application. 12C Breathing Reference Application
Describes the functionality of the - Working with the

I2C Cargo Example Application

12C Cargo Example Application.

12C Cargo Example Application

AI121 Radar Data and Control (PDF)

A121 Radar Data and Control

Describes different aspects of the
Acconeer offer, for example radar
principles and how to configure

- To understand the Acconeer sensor
- Use case evaluation

Readme (txt)

README

Various target specific information
and links

- After SDK download

© 2025 by Acconeer AB - All rights reserved

Page 4 of 16

((()
A121 Distance Detector

© 2025 by Acconeer AB - All rights reserved Page 5 of 16

A121 Distance Detector

2 Distance Detector

The goal of the distance detector is to produce highly accurate distance measurements while maintaining low power
consumption by combining the features of the A121 sensor with powerful signal processing concepts, all wrapped with a
simple to use API.

The full functionality can be explored in the Exploration Tool. Once the desired performance is achieved, the configuration
can be carried over to the embedded version of the algorithm, available in the C-SDK.

2.1 Introduction

The purpose of the distance detector is to detect objects and estimate their distance from the sensor. The algorithm is built
on top of the Sparse IQ service and has various configuration parameters available to tailor the detector to specific use
cases. The detector utilizes the following key concepts:

1. Distance filtering: A matched filter is applied along the distance dimension to improve the signal quality and suppress
noise.

2. Subsweeps: The measured range is split into multiple subsweeps, each configured to maintain SNR throughout the
sweep while minimizing power consumption.

3. Comparing sweep to a threshold: Peaks in the filtered sweep are identified by comparison to one of three available
threshold methods.

4. Estimate distance to object: Estimate the distance to the target by interpolation of the peak and neighboring
amplitudes.

5. Sort found peaks: If multiple peaks are found in a sweep, three different sorting methods can be employed, each
suitable for different use-cases.

2.2 Distance Filter

As the sensor produce coherent data, samples corresponding to the location of an object will have similar phase, while
the phase of free-air measurements will be random. By applying a filter in the distance domain, the noise in the free-air
regions will be suppressed, resulting in an improved SNR.

The filter is automatically configured based on the detector configuration as a first order Butterworth filter with a cutoff
frequency corresponding to a matched filter.

2.3 Subsweeps

The measurement range is split up into multiple subsweeps to allow for optimization of power consumption and signal
quality. The profile, HWAAS and step length are automatically assigned per subsweep, based on the detector config.

* A shorter profile is selected at the start of the measurement range to minimize the interference with direct leakage,
followed by longer profiles to gain SNR. The longest profile used can be limited by setting the parameter
maz_profile. If no profile is specified, the subsweeps will be configured to transfer to the longest profile
(without interference from direct leakage) as quickly as possible to maximize SNR. Longer profiles yield a higher
SNR at a given power consumption level, while shorter profiles gives better depth resolution.

* The step length can also be limited by setting the parameter maz_step_length. If no value is supplied, the step
length is automatically configured to appropriate size, maintaining good depth resolution while minimizing power
consumption. Note, the algorithm interpolates between the measured points to maintain good resolution, even with
a more coarse step length.

* HWAAS is assigned to each subsweep in order to maintain SNR throughout the measured range as the signal
strength decrease with the distance between the sensor and the measured target. The target SNR level is adjusted
using the parameter signal_quality.

Note, higher signal quality will increase power consumption and measurement time.

The expected reflector shape is considered when assigning HWAAS to the subsweeps. For planar reflectors, such
as fluid surfaces, select PLANAR . For all other reflectors, select GENERIC .

In the Exploration Tool GUI, the subsweeps can be seen as slightly overlapping lines. If the measured object is in the
overlapping region, the result from the neighboring segments is averaged together.

© 2025 by Acconeer AB - All rights reserved Page 6 of 16

A121 Distance Detector

2.4 Thresholds

To determine if any objects are present, the sweep is compared to a threshold. A peak is defined as a middle point that
has greater amplitude than its two neighboring points. For an object to be detected, it has to yield a peak where all three
points are above the threshold. Three different thresholds can be employed, each suitable for different use-cases.

Fixed amplitude threshold
The simplest approach to setting the threshold is choosing a fixed threshold over the full range. The amplitude
value is set through the parameter fized_threshold_value. The fixed amplitude threshold does not have any
temperature compensation built in.

Fixed strength threshold
This threshold takes a fixed strength value and converts to the corresponding amplitude value. The purpose is to
produce a threshold that is able to detect an object of a with a specific reflectiveness, independent of the distance
to the object. The strength value is set through the parameter fized_strength_threshold_value. The fixed
strength threshold does not have any temperature compensation built in.

Recorded threshold
In situations where stationary objects are present, the background signal is not flat. To isolate objects of interest,
the threshold is based on measurements of the static environment. The first step is to collect multiple sweeps, from
which the mean sweep and standard deviation is calculated. Secondly, the threshold is formed by adding a number
of standard deviations (the number is determined by the parameter threshold_sensitivity) to the mean sweep.
The recorded threshold has a built in temperature compensation, based on the internal temperature sensor.

Constant False Alarm Rate (CFAR) threshold (default)

A final method to construct a threshold for a certain distance is to use the signal from neighboring distances of
the same sweep. This requires that the object gives rise to a single strong peak, such as a fluid surface and not,
for example, the level in a large waste container. The main advantage is that the memory consumption is minimal.
The sensitivity of the threshold is controlled through threshold_sensitivity. Asthe CFAR threshold is formed
based on each momentary sweep, any temperature effects on the signal are implicitly accounted for by the algorithm.
When measuring close to the sensor, the direct leakage will strongly affect the CFAR threshold, and therefore the
CFAR threshold is one-sided close to the sensor. This means that the threshold only includes neighbors further
away from the sensor.

2.5 Reflector Shape
The expected reflector shape is considered when assigning HWAAS to the subsweeps and during peak sorting.
The reflector shape is set through the detector configuration parameter reflector_shape.

For a planar reflector, such as a fluid surface, select PLANAR . For all other reflectors, select GENERIC .

2.6 Reflector Strength

The reflector strength characterize the reflectiveness of the detected object. The detector reports a strength number for
each estimated distance.

The strength is estimated using the RLG equation, peak amplitude, noise floor estimate and the sensor base RLG. More
information on the RLG equation and base RLG can be found here.

The estimated strength is used by the detector when sorting the estimated distances according to their relative strengths. It
can also be used by the application to infer information about a certain distance estimate. For example, a highly reflective
object such as a metal surface will typically have a higher strength number than a less reflective surface such as a wooden
structure.

Ideally, the strength estimate is agnostic to the distance of the object. However, due to close range effects, the strength
tends to be under estimated at short distances (< 1m).

The strength is reported in dB.

2.7 Peak Sorting

Multiple objects in the scene will give rise to several peaks. Peak sorting allows selection of which peak is of highest
importance.

The peak sorting strategy is set through PeakSortingMethod, which is part of the detector configuration.

The following peak sorting options are available.

© 2025 by Acconeer AB - All rights reserved Page 7 of 16

https://docs.acconeer.com/en/latest/radar_data_and_control/a121/in_depth_topics/fom.html

A121 Distance Detector

Closest
This method sorts the peaks according to distance from the sensor.

Strongest (default)
This method sorts the peaks according to their relative strength.

Note, the reflector shape is considered when calculating each peak’s strength. The reflector shape is selected through
detector configuration parameter reflector_shape.

Note, regardless of selected peak sorting strategy, all peaks and the corresponding strengths are returned by the distance
detector.

2.8 Detector Calibration

For optimal performance, the detector performs a number of calibration steps. The following section outlines the purpose
and process of each step. Note, which of the following calibration procedures to perform is determined by the user
provided detector config. For instance, the close range measurement is only performed when measuring close to the
Sensor.

To trigger the calibration process in the Exploration Tool gui, simply press the button labeled “Calibrate detector”. If you
are running the detector from a script, the calibration is performed by calling the method calibrate_detector.

Noise level estimation
The noise level is estimated by disabling of the transmitting antenna and just sample the background noise with
the receiving antenna. The estimate is used by the algorithm for various purposes when forming thresholds and
estimating strengths.

Offset compensation
The purpose of the offset compensation is to improve the distance trueness (average error) of the distance detector.
The compensation utilize the loopback measurement, where the pulse is measured electronically on the chip,
without transmitting it into the air. The location of the peak amplitude is correlated with the distance error and
used to correct the distance raw estimate.

Close range measurement calibration

Measuring the distance to objects close to the sensor is challenging due to the presence of strong direct leakage.
Direct leakage is the static component of the measured signal, visible for the first couple of centimeters, resulting
from reflections from components close to the sensor such as lens and PCB, as well as the energy propagating
directly from Tx to Rx. One way to get around this is to characterize the leakage component and then subtract
it from each measurement to isolate the signal component. This is exactly what the close range calibration does.
While performing the calibration, it is important that the sensor is installed in its intended geometry and that there
is no object in front of the sensor as this would interfere with the direct leakage.

The calibration is only performed if the logic is enabled through the parameter
close_range_leakage_cancellation and the start_m is set to a value lower that ~20 cm when using CFAR
threshold and ~11 cm for the other thresholds. The reason for CFAR requiring a greater distance is to initialize the
threshold with data, free from direct leakage.

The close range measurement calibration is only valid in the range of +-15 °C from where it was calibrated.

Recorded threshold
The recorded threshold is also recorded as a part of the detector calibration. Note, this calibration is only performed
if the detector is configured to used recorded threshold or if close range measurement is active, where recorded
threshold is used.

2.9 Detector Calibration Update

To maintain optimal performance, the sensor should be recalibrated if calibration_needed is set to True. A sensor
calibration should be followed by a detector calibration update, performed by calling update_detector_calibration.

The detector calibration update carries out a subset of the calibration steps. All the calibration steps performed are agnostic
to its surroundings and can be done at any time without considerations to the environment.

© 2025 by Acconeer AB - All rights reserved Page 8 of 16

A121 Distance Detector

2.10 Temperature Compensation (Recorded Threshold)

The surrounding temperature impacts the amplitude of the measured signal and noise. To compensate for these effects,
the recorded threshold has a built in compensation model, based on a temperature measurement, internal to the sensor.
Note, the effectiveness of the compensation is limited when measuring in the close range region.

The CFAR threshold exhibits an indirect temperature compensation as the threshold is formed based on the sweep itself.
As the sweep changes with temperature, so does the threshold accordingly.

The fixed thresholds (amplitude and strength) does not have any temperature compensation.

2.11 Result
The result returned by the distance detector is contained in the class DetectorResult.

The two main components of the distance detector result are the estimated distances and their corresponding estimated
reflective strengths. The distances and the corresponding strengths are sorted according to the selected peak sorting
strategy.

In addition to the distances and strengths, the result also contains the boolean near_edge_status. It indicates if an
object is located close to start of the measurement range, but not resulting in a clear peak, but rather the tail of an
envelope. The purpose of the boolean is to provide information in the case when an object is present, just outside of the
measurement range. One example of when this becomes useful is the Tank reference application, which is built on top of
the distance detector. If the tank is overflowing, the peak might end up just outside of the measured interval, but the tail
end of the envelope would still be observable.

The result also contains the boolean calibration_needed. If True, the procedure, described in the section Detector
Calibration, needs to be performed to maintain optimal performance.

Note, the sweep and threshold, presented in the distance detector GUI are not returned by the distance detector. These
entities are processed and evaluated internally to the algorithm. The purpose of visualizing them in the GUI is to guide in
the process of determining the detector configuration, such as selection of threshold strategy and sensitivity.

2.12 Hints and Recommendations

The purpose of this section is to provide information on how to configure the distance detector, as well as some practical
aspects of the algorithm and overall application.

Configuration Hints
The following section contains hints and recommendations on how to configure the distance detector.

Several of the described parameters affect the sensor configuration and memory utilization. For a quantitative estimate on
these numbers, please consult the Resource Calculator, available in the Exploration Tool.

The distance detector has two predefined configurations, available in the application as presets, with the following design
philosophies:

Balanced
A trade-off between SNR, radial resolution and power consumption. Here, a larger step length is used, reducing
the number of measured data points. Also, the signal quality is set to a more moderate value, resulting in a lower
HWAAS. Both aspects yield shorter measurement and lower power consumption. Lastly, a higher max profile is
used, providing higher SNR per measured per measurement instance.

High accuracy
Optimized for better radial resolution and SNR, with a penalty on power consumption. Here, a lower step length
is used, providing more data points to be processed for the distance filter, increasing the SNR through processing.
Also, the signal quality is increased, resulting in more HWAAS. Lastly, a shorter max profile is used, providing
better radial resolution.

These presets should be viewed as a starting point, from where a more tailored configuration can be developed.
The following points provide insight into the configuration process.
* Set start_m and end_m to the desired measurement interval.

* Measuring close to the sensor (sub ~6¢cm) requires close_range_leakage_cancellation to be enabled. This
will trigger the close range calibration method. The calibration procedure requires a known environment and is

© 2025 by Acconeer AB - All rights reserved Page 9 of 16

https://docs.acconeer.com/en/latest/ref_apps/a121/tank_level.html

A121 Distance Detector

valid in a temperature range of +-15 °C from the temperature where it was executed. For more details, see the
section Close range measurement calibration under Detector Calibration.

Due to these restrictions, it is advised to only use this mode when the use case allows for calibration in a known
environment, and the possibility to redo the calibration when the temperature has changed more than 15 °C,
indicated by the variable calibration_needed.

If close_range_leakage_cancellation is disabled, the application will not perform the close range leakage
cancellation. Measuring close to the sensor can result in artifacts from the direct leakage being visible as peaks in
the sweep.

* The step length and profile are both automatically selected to yield a good trade-off between SNR and power
consumption. The SNR can be improved by reducing step length through the parameter maz_step_length, with
a penalty on power consumption. The radial resolution can be increased by limiting the max profile used through
the parameter maz_profile, with a penalty on SNR.

* The reflector_shape should be set to PLANAR when measuring a planar surface. In all other cases, it should be
setto GENERIC.

 Peak sorting determines the sort order of the detected objects. Whether to use CLOSEST or STRONGEST depends on
the use case.

Note, regardless of the selected peak sorting method, all detected distances are returned by the application.

e There are four threshold methods available. Which one to use is use case dependent. More information can be
found under the section Thresholds.

— CFAR - Suitable when the use case involve clear peaks such as a level measurement application. The method
is robust over temperatures and does not required any consideration to the surroundings when calibrating.

— FIXED_STRENGTH - Applies a threshold to the estimated strengths. This threshold is suitable when estimating
the distance to a strong reflector in a cluttered environment.

— FIXED - Applies a threshold to the sweep amplitude. This threshold detects objects based on their measured
amplitudes.

Note, for a given object, the amplitude reduce with distance as less energy is reflected back to the sensor,
resulting in missed detections.

— RECORDED - This threshold records the background clutter and is thereafter applied to the sweep as a threshold.
The threshold is suitable when the environment consists of a several reflecting objects that should not be
detected (clutter).

The threshold has a built in temperature compensation, based internal temperature sensor, adjusting the
threshold to keep a constant false positive rate.

Note, the threshold is only valid as long as the background is static. A change in the clutter can result in
undesired objects being detected.

* Generally, the CFAR or RECORDED are preferred when the ambient temperature is expected to change. The
FIXED_STRENGTH and FIXED are fixed and has no temperature compensations built in.

e threshold_sensitivity controls the false positive rate for the CFAR and recorded threshold. The parameters
should be tuned for each use case to achieve the desirable performance.

* signal_quality should be set so that desirable detection rate is achieved. A higher value corresponds to higher
HWAAS and SNR, but also higher power consumption.

Use Case Scenarios
This section outlines how to use the distance detector in common scenarios.

Measuring close to the sensor
The energy propagating directly from the transmitting to the receiving antenna is referred to as the direct leakage.
The direct leakage component is typically stronger than the component reflected of the object of interest, resulting
in no clear peak from the object being visible in the sweep. This becomes an issue when measuring closer than ~6
cm from the sensor.

One way of alleviating this issue is to use Close range measurement calibration, described under Detector
Calibration.

© 2025 by Acconeer AB - All rights reserved Page 10 of 16

A121 Distance Detector

As stated, this mode comes with some limitations on temperature range and requirements on calibration
environment. Both these aspects needs to be considered before the logic is enabled.

Measuring far from the sensor
As the distance between the sensor and a given object increase, the amount of energy reflected back to the sensor
decrease. This makes it harder to detect objects at greater distances.

To maximize detection rate, the maz_step_length can be reduced, signal_quality increased and
maz_profile setto the highest profile (profile 5). The first two parameters will affect the power consumption.

Multiple objects in the scene
Since the A121 sensor is a single channel sensor (one Tx and one Rx), multiple objects at the same radial distance
will be reported as a single object.

If multiple objects are present at different radial distances from the sensor, with a reasonable separation, they will
be reported individually.

The distance detector returns all the detected distances and their corresponding strengths. The result can thereafter
be post-processed by the application, for instance based on the distances or strengths, to produce the desired result.

One example where multiple objects will be detected is when measuring the distance to an oil surface in a metal
tank. As oil is typically somewhat transparent to 60GHz, some energy will be reflected of the surface, while some
energy will travel through the oil and be reflected of the bottom of the tank, resulting in two peaks at two different
distances. The strength of the oil peak can be significantly lower than the strength of metal bottom peak. The
estimated strengths can therefore be used to determine which estimated distance corresponds to the oil surface.

Practical Considerations
The following section highlights aspects outside of the distance detector, contributing to the overall performance.

Using a lens
A plastic lens can be used to shape the radiation pattern, focusing the emitted power in the desired direction and
reduce side lobes.

Focusing the energy in the desired direction will increase the SNR and improve the detection at greater distances.
The lens is typically made out of plastic and can in many cases be incorporated in the cover of the plastic casing.

Post-processing
The distance detector returns all detected distances and their corresponding strengths. Post-processing the result in
the application can help determining the relevant distance.

Below are a few possible post-processing concepts outlined.

Strength
The strength of the measured target can be characterized as a part of the development process and then used
to filter out the relevant object.

For instance, the strength value of a water surface can be characterized and then used to identify it in an
environment with other reflectors such as a concrete structure in sewer level application.

Distance
The distances can be processed to identify the relevant distance.

For instance, in a water tank level measurement application, the greatest distance can be selected as the water
level since it is known that the water is not transparent to 60GHz and therefor no objects will be detected
below the water surface.

Distance variation
Looking at the variation over several distance measurements can help identifying the distance to a dynamic
target, such as a stream of water.

For instance, in a sewer application, where the sensor is mounted at the top of the manhole, looking down
towards the water. In such an environment, it is common to have several reflectors, cluttering the scene. By
looking at the variation of estimated distances, it is possible to determine which distance corresponds to a
stream of moving water.

© 2025 by Acconeer AB - All rights reserved Page 11 of 16

A121 Distance Detector

3 CAPI

The focus of this section is the Distance Detector C API.

It is recommended to read this section together with example_detector_distance.c located in the SDK package. The full
API specification, rss_api.html, provided in the SDK package is also good to read.

The Distance Detector utilizes one or more sensor configurations to cover the full configured range. This will result in
multiple sensor measurements for one detector result. Thereby, multiple detector functions are called in a while loop
waiting for a sensor interrupt for each iteration.

An example of how to use the API is provided in the SDK: example_detector_distance.c

3.1 Calibration

There are two types of calibrations needed to use the distance detector.
* Sensor calibration
¢ Detector calibration

The sensor calibration ensures that the sensor can measure properly. The detector calibration ensures that the calculated
distances are correct.

The sensor calibration should be performed before the detector calibration.

Environment and Temperature Constraints

Since the distance detector needs to be calibrated, there are some constraints when using it in different physical
environments and temperatures.

Sensor Calibration

The sensor calibration is not dependent on the physical environment. As an example, a sensor calibration can be done
with the sensor placed in one part of a tank but is still valid if the sensor is moved to another part of the tank.

The sensor calibration is dependent on temperature. If the temperature changes more than 15 degrees Celsius, the sensor
calibration needs to be redone.

See the Sparse 1Q User Guide for more information on the sensor calibration.

Detector Calibration

The detector calibration is dependent on the physical environment if at least one of the following configurations is used:
* Close range leakage cancellation: true (default false)
¢ Threshold method: Recorded (default CFAR)

This means that if at least one of these two configurations is used, the detector calibration must be done in the setup
where it will be used. Objects present in front of the sensor during the detector calibration in this configuration will not
be detected during normal operation.

Whenever a sensor calibration needs to be redone (due to a temperature change), a detector calibration update needs to be
done. The detector calibration update is a subset of a full calibration and is not dependent on the physical environment.
This means that, for example, objects within the measurement range during the calibration update will still be detected
after the calibration update.

The close range leakage cancellation part of the calibration is not included in the calibration update, even though it is
temperature dependent. The reason for this is that it is also dependent on the physical environment, as mentioned above.
This means that close range leakage cancellation cannot be used in applications where the temperature changes more than
15 degrees Celsius during operation.

© 2025 by Acconeer AB - All rights reserved Page 12 of 16

A121 Distance Detector

Summary

Below is a table of the dependency to the physical environment and/or temperature depending on configuration and which
calibration function is used (full or update).

Configuration Full Calibration Calibration Update
Close range leakage cancellation | Physical environment | Invalid
- Temperature
Recorded threshold - Physical environment | Temperature
- Temperature
Other - Temperature - Temperature

No Retention

Note that if there’s no retention in the application, the full calibration needs to be done every time before measuring. This
means that close range leakage cancellation and/or recorded threshold cannot be used unless caching of the calibration
result is done. See section Calibration Caching for more information.

RSS API Usage

The calibration function handles all sensor communication within the detector, except for waiting for sensor interrupt.
The calibration is performed in multiple steps and therefore the function needs to be called in a while loop until complete.

See example_detector_distance.c for how to do this.

Calibration Caching

When reading this section, it is good to look at example_detector_distance_calibration_caching.c located in the SDK
package.

Calibration caching is typically done to reduce power consumption in applications where temperature changes are
common or if there’s no memory retention in the application. Calibration caching means that the results are saved and
then used later instead of redoing the calibration.

There are three types of calibration results.
* Sensor calibration result
* Static detector calibration result
* Dynamic detector calibration result

The static detector calibration result is temperature independent. This means that it only needs to be saved once and can
then be used regardless of temperature.

The sensor calibration result and the dynamic detector calibration result are temperature dependent. This means that they
need to be saved for a specific temperature. If the sensor needs to be re-calibrated, the saved calibration results can be
used instead of doing a new calibration. The saved calibration results should only be used if they were produced within a
temperature range of at most +- 15 degrees Celsius from the current temperature.

The implementation of calibration caching needs to be done in the application, i.e. it is not part of the RSS library itself.
To see an example of how it can be done, please look in example_detector_distance_calibration_caching.c.

3.2 Process

Depending on the configuration the Distance Detector will use one or more sensor configurations resulting in one or
more sensor measurements for each detector measurement. The process function also requires a specific call chain to be
performed for one sensor measurement. This call chain should be performed within a while loop to cover all possible
sensor measurements.

Sparse 1Q Data

As part of the distance result struct there is a member called processing_result which contains the underlying Sparse 1Q
data used to calculate the distance result. The processing_result will be updated each time the
acc_detector_distance_process function is called.

© 2025 by Acconeer AB - All rights reserved Page 13 of 16

A121 Distance Detector

3.3 Memory
Flash

The example application compiled from example_detector_distance.c on the XM 125 module requires around 95 kB.

RAM

The RAM can be divided into three categories, static RAM, heap, and stack. Below is a table for approximate RAM for
an application compiled from example_detector_distance.c.

RAM Size (kB)

Static 1
Heap 12
Stack 4
Total 17

Note that the heap is very dependent on the configuration. The configurations that have the largest impact on the memory
are start_m, end_m, step_length and threshold_method.

3.4 Power Consumption

The example application compiled from example_detector_distance_low_power_off.c on the XM125 module has an
average current of 0.27 mA.

© 2025 by Acconeer AB - All rights reserved Page 14 of 16

((O
A121 Distance Detector

4 Configuration Parameters

Name Type Default Value | Min Max
start_m float 0.25 0.0 <end_m
end_m float 3.0 > start_m | 23.0
max_step_length uintl6_t | O

max_profile enum profile_5 profile_1 profile_5
signal_quality float 15.0 -10.0 35.0
threshold_method enum cfar

peak_sorting_method enum strongest

reflector_shape enum generic
num_frames_in_recorded_threshold | uintl6_t | 100

fixed_amplitude_threshold_value float 100.0

fixed_strength_threshold_value float 0.0

threshold_sensitivity float 0.5 0.0 1.0
close_range_leakage_cancellation bool false n/a n/a

Table 4: Distance Detector Configuration Parameters

© 2025 by Acconeer AB - All rights reserved Page 15 of 16

<(O
A121 Distance Detector

5 Disclaimer

The information herein is believed to be correct as of the date issued. Acconeer AB (“Acconeer”) will not be responsible
for damages of any nature resulting from the use or reliance upon the information contained herein. Acconeer makes no
warranties, expressed or implied, of merchantability or fitness for a particular purpose or course of performance or usage
of trade. Therefore, it is the user’s responsibility to thoroughly test the product in their particular application to
determine its performance, efficacy and safety. Users should obtain the latest relevant information before placing orders.

Unless Acconeer has explicitly designated an individual Acconeer product as meeting the requirement of a particular
industry standard, Acconeer is not responsible for any failure to meet such industry standard requirements.

Unless explicitly stated herein this document Acconeer has not performed any regulatory conformity test. It is the user’s
responsibility to assure that necessary regulatory conditions are met and approvals have been obtained when using the
product. Regardless of whether the product has passed any conformity test, this document does not constitute any
regulatory approval of the user’s product or application using Acconeer’s product.

Nothing contained herein is to be considered as permission or a recommendation to infringe any patent or any other
intellectual property right. No license, express or implied, to any intellectual property right is granted by Acconeer

herein.

Acconeer reserves the right to at any time correct, change, amend, enhance, modify, and improve this document and/or
Acconeer products without notice.

This document supersedes and replaces all information supplied prior to the publication hereof.

a((oneer

© 2025 by Acconeer AB - All rights reserved Page 16 of 16

	Acconeer SDK Documentation Overview
	Distance Detector
	Introduction
	Distance Filter
	Subsweeps
	Thresholds
	Reflector Shape
	Reflector Strength
	Peak Sorting
	Detector Calibration
	Detector Calibration Update
	Temperature Compensation (Recorded Threshold)
	Result
	Hints and Recommendations
	Configuration Hints
	Use Case Scenarios
	Practical Considerations

	C API
	Calibration
	Environment and Temperature Constraints
	RSS API Usage
	Calibration Caching

	Process
	Sparse IQ Data

	Memory
	Flash
	RAM

	Power Consumption

	Configuration Parameters
	Disclaimer

