
A121 Parking Reference Application User
Guide

User Guide

A121 Parking Reference Application User Guide

A121 Parking Reference Application User Guide

User Guide

Author: Acconeer AB

Version:a121-v1.10.0

Acconeer AB March 26, 2025

© 2025 by Acconeer AB - All rights reserved Page 2 of 16

A121 Parking Reference Application User Guide

Contents

1 Acconeer SDK Documentation Overview 4

2 Introduction 5

3 Your First Measurement 6
3.1 Exploration Tool . 6
3.2 Embedded C . 7

4 Configuration 8
4.1 Presets . 8
4.2 Further Configuration . 8

5 Physical Integration 9

6 Calibration 10

7 Reference Application Output 11

8 Algorithm Signal Processing 12
8.1 Signature . 12
8.2 Obstruction Detection . 12
8.3 Calibration . 12

9 Memory and Power Consumption 13
9.1 Memory . 13
9.2 Power Consumption . 13

10 Test Results 14
10.1 Temperature . 14
10.2 Obstruction Detection . 15

11 Disclaimer 16

© 2025 by Acconeer AB - All rights reserved Page 3 of 16

A121 Parking Reference Application User Guide

1 Acconeer SDK Documentation Overview

To better understand what SDK document to use, a summary of the documents are shown in the table below.

Table 1: SDK document overview.

Name Description When to use
RSS API documentation (html)

rss_api The complete C API documentation. - RSS application implementation
- Understanding RSS API functions

User guides (PDF)

A121 Assembly Test Describes the Acconeer assembly
test functionality.

- Bring-up of HW/SW
- Production test implementation

A121 Breathing
Reference Application

Describes the functionality of the
Breathing Reference Application.

- Working with the Breathing
Reference Application

A121 Distance Detector Describes usage and algorithms
of the Distance Detector. - Working with the Distance Detector

A121 SW Integration
Describes how to implement each
integration function needed to use
the Acconeer sensor.

- SW implementation of
custom HW integration

A121 Presence Detector Describes usage and algorithms
of the Presence Detector. - Working with the Presence Detector

A121 Smart Presence
Reference Application

Describes the functionality of the
Smart Presence Reference Application.

- Working with the Smart Presence
Reference Application

A121 Sparse IQ Service Describes usage of the Sparse IQ
Service. - Working with the Sparse IQ Service

A121 Tank Level
Reference Application

Describes the functionality of the
Tank Level Reference Application.

- Working with the Tank Level
Reference Application

A121 Touchless Button
Reference Application

Describes the functionality of the
Touchless Button Reference Application.

- Working with the Touchless Button
Reference Application

A121 Parking
Reference Application

Describes the functionality of the
Parking Reference Application.

- Working with the Parking
Reference Application

A121 STM32CubeIDE
Describes the flow of taking an
Acconeer SDK and integrate into
STM32CubeIDE.

- Using STM32CubeIDE

A121 Raspberry Pi Software Describes how to develop for
Raspberry Pi. - Working with Raspberry Pi

A121 Ripple Describes how to develop for
Ripple.

- Working with Ripple
on Raspberry Pi

XM125 Software Describes how to develop for
XM125. - Working with XM125

XM126 Software Describes how to develop for
XM126. - Working with XM126

I2C Distance Detector Describes the functionality of the
I2C Distance Detector Application.

- Working with the
I2C Distance Detector Application

I2C Presence Detector Describes the functionality of the
I2C Presence Detector Application.

- Working with the
I2C Presence Detector Application

I2C Breathing Reference Application Describes the functionality of the
I2C Breathing Reference Application.

- Working with the
I2C Breathing Reference Application

A121 Radar Data and Control (PDF)

A121 Radar Data and Control
Describes different aspects of the
Acconeer offer, for example radar
principles and how to configure

- To understand the Acconeer sensor
- Use case evaluation

Readme (txt)

README Various target specific information
and links - After SDK download

© 2025 by Acconeer AB - All rights reserved Page 4 of 16

A121 Parking Reference Application User Guide

2 Introduction

This Reference Application demonstrates how the A121 sensor can be used as a parking sensor. The sensor can be mounted
either on the ground or on a pole, within or near a parking space. This Reference Application indicates whether a car
is parked in the designated space while maintaining low power consumption. This Reference Application also includes
a component called Obstruction Detection. The purpose of this component is to identify if something is blocking the
sensor, which could interfere with parking detection.

© 2025 by Acconeer AB - All rights reserved Page 5 of 16

A121 Parking Reference Application User Guide

3 Your First Measurement

In this section you will find the information needed to make your first measurement with the Parking Reference
Application.

3.1 Exploration Tool

To evaluate parking detection with the Acconeer radar, we recommend that you start with one of our Evaluation Kits and
the Exploration Tool application.

After the steps in Getting started have been done, press Parking in the left hand side menu and then press the Calibrate
button followed by Start measurement. With the default settings, the radar will search for a parked car in the interval of
0.1 m to 0.4 m with an update rate of 0.1 Hz. To get a faster response from the sensor while trying out the application you
can increase the update rate to, for example, 5 Hz. If you place a stationary object approximately 20 cm from the sensor,
the Parking Reference Application should report it as a parked car. If you place an object straight onto or very close to the
sensor the Parking Reference Application should output Obstruction detected.

Since the default settings have the obstruction detection activated, the GUI shows three plots, as shown in Figure 1. If the
obstruction detection is deactivated, we would only see two plots in the GUI.

The main plot, called Sampled Signatures, shows the signature history and their location in the 2D space. If a car is
detected, two lines indicating the range for which the object signature must be within to be considered the same object. If
a large enough fraction of signatures is above the threshold and within the range, detection is triggered and indicated.

The secondary plot, called Noise adjusted amplitude shows the amplitude levels after normalizing against an
approximation of the noise level and adjusting with the range. This is the input to each signature calculation. You can
read more about the algorithm in the section Algorithm Signal Processing

The obstruction plot is only shown when the obstruction detection is activated. This plot shows the amplitude data for
the region that the obstruction detection is active in as well as the signature of the displayed data as an orange point. In
addition, the signature of the calibration data is also shown together with a bounding box based on the distance threshold.
If the orange point moves outside the box, the obstruction detection will trigger.

© 2025 by Acconeer AB - All rights reserved Page 6 of 16

https://docs.acconeer.com/en/latest/getting_started/setting_up_and_running_et.html

A121 Parking Reference Application User Guide

Figure 1: Example of the parking GUI with obstruction detection active. A parked car is reported and the reported object
has been seen for three frames (which is indicated that you have three dots above the threshold).

3.2 Embedded C

An embedded C application is provided in the Acconeer SDK, available at the Acconeer Developer Site.

The embedded application use the same default configuration as Exploration Tool. By default, it prints the result using
printf which usually is connected to stdout or a debug UART, depending on environment. The application is provided in
source code.

© 2025 by Acconeer AB - All rights reserved Page 7 of 16

https://developer.acconeer.com/

A121 Parking Reference Application User Guide

4 Configuration

This section outlines how to configure the Parking Reference Application in common scenarios.

4.1 Presets

The Parking Reference Application has two predefined configurations, available in the application as presets, with the
following purposes:

Ground
This preset is suitable for scenarios where the sensor is located close to the car, typically for ground-mounted or
curb-mounted parking sensors. The update rate of this preset is set to 0.1 Hz to maintain low power consumption,
as many ground-mounted parking sensors are battery-powered and do not require a fast response time.

Pole
This preset is suitable for use cases where the sensor observes the car from a longer range, typically found in pole-
mounted parking sensors that view the car from the side or slightly downward. This preset features a higher update
rate compared to the ground-mounted preset, as many pole-mounted parking sensors are connected to the power
grid. Additionally, the higher update rate helps make the detection less sensitive to interruptions, such as when a
person walks between the car and the pole.

These presets are available both in the Exploration Tool application and in our C example. They should be viewed as a
starting points, from where a more tailored configuration can be developed.

4.2 Further Configuration

This section describes further configurations that can be made to tailor the application to your use case.

Setting the Measurement Range
Adjustments to the measurement range can be done by changing the range settings (range_start_m and
range_end_m). These determine the approximate range from the sensor wherein you expect to find a part of a car.
Note that it is detrimental to the performance to let the range be to close to the sensor, it is not recommended to set
the range_start_m closer than the direct leakage allows. This is constricted in Exploration Tool application and
API.

Obstructed Sensor
If an object is blocking the sensor, even if the start of the measurement range is set beyond it, it will affect the signal
and it might also affect the sensor’s ability to detect a parked car. For some use cases it is important to know if the
sensor is obstructed or not and in these cases one can enable the Obstruction Detection component of the Parking
Reference Application. You can read more about how this part of the algorithm works in Obstruction Detection.

Setting the Update Rate
The main factor behind the energy consumption for this Reference Application is the update rate. For a battery
driven application it is therefore beneficial to set the update rate as low as the use case will allow to prolong the
battery life of the device.

© 2025 by Acconeer AB - All rights reserved Page 8 of 16

A121 Parking Reference Application User Guide

5 Physical Integration

This use case is highly dependent on the integration, both for the obstruction detection and the primary parking detection.
All notes here should be taken as general guidelines.

In the pole mounted case (when the sensor looks at the car from the side) there are a few issues found in testing. Since a
car hood often consists of large flat surfaces which can deflect the signal instead of reflecting it, there is a risk that a car
can appear “invisible” to the sensor. The most natural way to mitigate this issue is to tilt the sensor slightly downwards,
which often catches the front of the car, which more often than the hood has reflective surfaces more perpendicular to the
sensor. All pole mounted tests were performed with the sensor angled slightly downwards, see Figure 3 and Figure 2.

Figure 2: Illustration of the sensor mount with angle used in testing the pole mounted case.

For the ground mounted case, the sensor should be looking straight up and be placed as central (under the car) as possible.
A common issue is that the casing creates some reflections within the closer parts of the detection range, which in turn
can cause false detects. This can be mitigated by either adjusting the start of the range (recommended) or adjusting the
amplitude_threshold . Adjusting the amplitude_threshold can impact detection performance.

Another caveat is to set the range too far from the sensor, so that the start of the range is inside the car. This can cause
the object to be missed, since the signal will reflect on the bottom of the car and travel too far in the allotted time. So the
start of the range should be kept as low as possible while not encountering problems with the integration. The best way to
achieve this is by testing using Exploration Tool.

© 2025 by Acconeer AB - All rights reserved Page 9 of 16

A121 Parking Reference Application User Guide

6 Calibration

There are two types of calibration to consider for this application, for normal usage, where only the parking detection part
of the application is used, and an additional for when obstruction detection is used. Both calibrations are done at start-up,
but the obstruction detector can require regular re-calibration.

Parking Detection
The calibration for the parking detection part of the application is done with the TX antenna turned off, so there is
no dependence on what is in front of the sensor at time of calibration. It can be thought of as part of the start-up
sequence without any operator requirements. The algorithm has an internal model to compensate for the temperature
fluctuations in the environment which otherwise would impact the data, so after the calibration has finished, there
is no need for additional calibration unless the power is dropped.

Obstruction Detection
For obstruction detection functionality, stricter calibration requirements apply. The obstruction calibration
analyzes the range close to the sensor while transmitting pulses, thus no object (except a potential casing) can be
present within 10 cm of the sensor during this calibration, when using the default configuration for obstruction
detection. The obstruction detection range can be configured and in that case no object can be present within the
obstruction detection range plus an additional margin of approximately 5 cm. In addition, optimal performance
requires calibration under conditions close to normal operation, meaning that the sensor needs to be installed into
its intended geometry. This is not required for the regular parking detection functionality, only for the obstruction
detection. If the obstruction detector is activated and the temperature is estimated to deviate more than 20 degrees,
it is recommended to re-calibrate the obstruction detector.

© 2025 by Acconeer AB - All rights reserved Page 10 of 16

A121 Parking Reference Application User Guide

7 Reference Application Output

The reference application will provide one or two main output: detection and if activated, obstruction. The parking
detection output will be True if the algorithm detects a car in the range and False otherwise. The obstruction detection
will output True if the algorithm detects an obstruction of the sensor. If the obstruction detection is not activated in the
configuration, this will always be False.

In addition, the Reference Application provides detailed information that is mainly used for plotting, but can of course be
used for other purposes within your application. This result is only available in the Exploration Tool API and not in the
embedded implementation for a microcontroller.

© 2025 by Acconeer AB - All rights reserved Page 11 of 16

A121 Parking Reference Application User Guide

8 Algorithm Signal Processing

This algorithm has an intended use of determining whether a stationary car is present in front of the sensor as well as
maintaining a low power consumption. The main idea is that a large stationary object will reflect a similar amount of
energy at the same distance over time, whereas a moving object (like a human) will have a more varied reflection. To
achieve this detection, we introduce a measurement, called “signature” of the sweep. The signature is calculated so that
a small change in amplitude or depth of the reflection will create a small change in the signature. So two signatures that
are close to each other will also correspond to similar reflected energy and thus likely the same object. The algorithm
proceeds to collect signatures over time and determine if a certain number of signatures are close to each other.

The measurement used for this algorithm is similar in nature to the measurement of the distance detector, which also
detects (and reports distance to) static objects. However, this configuration is tailor made for the parking use case and
designed with a power constraint in mind.

The signatures are calculated from the mean sweep over a frame. For all sweeps, we only use the amplitude measurements
for each depth, denoted with A(d) (which is obtained by taking the absolute value of the Sparse IQ data). The phase
information is not used in this reference application. See Frames, sweeps and subsweeps for more information about
frames and sweeps.

8.1 Signature

The signature concept mentioned here and used in the algorithm is a 2D measure on the amplitude data of the whole sweep.
It differs slightly between the obstruction detection and the normal parking detector by taking the average amplitude over
the whole sweep in the obstruction case while taking the max amplitude in the parking detection case. Here WD denotes
“Weighted Distance”.

Avg(A) =
1

Nd
∑
d

A(d)

Max(A) = max
d

(A(d))

WD(A) =
∑d A(d)∗d

∑d A(d)

So for the parking case, the signature Sp, is obtained by:

Sp(A) =WD(A),Max(A)

And for the obstruction detection, the signature So:

So(A) = Avg(A),Max(A)

For the parking case, the measurement is not necessarily continuous. But in practice, small changes in amplitude tends to
result in small changes in the signature, which is the relevant property used for the algorithm.

8.2 Obstruction Detection

The Obstruction Detection component of this Reference Application measures few points very close to the sensor, within
the so-called direct leakage. The obstruction detection feature allows the user to configure both the sensitivity and the
range of the processing. Since the amplitude is sensitive to temperature fluctuations, it is recommended to test the
threshold under conditions appropriate to the use case. If the obstruction detection feature is used, it is important to
ensure that the range of obstruction detection does not overlap with the range for parked car detection.

8.3 Calibration

As stated in previous sections both the parking detection part of this application and the obstruction detection part needs
to be calibrated. The parking detection part uses an estimation of the underlying noise level to calculate when an object
is in front of it. The calibration is necessary to estimate this noise level. The noise level is mainly dependent on the
temperature, so the calibration not only stores the noise level, but also the temperature measured by the sensor at the
time of calibration. The algorithm automatically compensates for the change in the environment temperature which is the
reason why this calibration is only necessary to do at start-up.

However, the calibration for obstruction detection requires measurements where both transmission and reception of pulses
are used to characterize the direct leakage. Since direct leakage varies with temperature and the algorithm does not
compensate for this, it is recommended to recalibrate when the temperature is estimated to deviate by more than 20
degrees from the original calibration temperature.

© 2025 by Acconeer AB - All rights reserved Page 12 of 16

https://docs.acconeer.com/en/latest/radar_data_and_control/a121/sweeps_and_frames.html

A121 Parking Reference Application User Guide

9 Memory and Power Consumption

In this section you can find the RAM memory usage and power consumption for the embedded C application.

9.1 Memory

The table below shows approximate RAM for the embedded C application using an XM125 for the two presets.

RAM Ground (kB) Pole (kB)
Static 1 1
Heap 5 7
Stack 2 2
Total 8 10

9.2 Power Consumption

The table below shows the average current in mA using an XM125 for the two presets.

Ground (mA) Pole (mA)
0.075 1.075

© 2025 by Acconeer AB - All rights reserved Page 13 of 16

A121 Parking Reference Application User Guide

10 Test Results

Three different cases have been tested: Ground, Pole and Curb mounted.

The pole mounted case intends to simulate when the sensor is mounted inside an electric charging station or similar where
the sensor is looking at the car from the front (or back), either at an angle or direct ahead. A preset for the pole mounted
case can also be found among the presets in Exploration tool. This case was tested with an FZP lens, see Figure 3.

Figure 3: Test setup for the pole mounted testing, note that the sensor is tilted slightly downwards (about 20 degrees from
a ground perpendicular axis). An FZP lens was also used, as seen in the picture.

The ground and curb mounted case is tested when the sensor looks at the car either directly underneath or from an angle
(perhaps mounted at the edge of a sidewalk), both have been tested using the preset “Ground mounted” in Exploration
tool. This case was tested using a reference design casing without any integrated lens.

Testing was performed by mounting the sensor in an appropriate way and measuring for 30 seconds. Performance when
a person is (when applicable) moving in front of the sensor were undertaken as well. Algorithm specific settings were
optimized after this, which is also reflected in the presets found in Exploration tool.

All test cases were fully completed without any issues.

The obstruction system was tested by obstructing the sensor with different objects. The temperature tested by calibrating
the sensor in ambient room temperature and then placing the sensor in a freezer as well as taking it outside during a cold
winter day in Sweden. No issues with the obstruction detection were found during these tests.

10.1 Temperature

All parking tests have been performed outside in southern Swedish winter conditions (around 0 degrees Celsius ambient
temperature) while the sensor was calibrated in indoor conditions. So a temperature difference slightly below 20 degrees
was experienced without issue.

© 2025 by Acconeer AB - All rights reserved Page 14 of 16

A121 Parking Reference Application User Guide

10.2 Obstruction Detection

The obstruction detection has been tested in a temperature oven by first calibrating in ambient (25 degrees) and then
heating/cooling and performing an obstruction in regular intervals. The obstruction (under default settings) works to 22
degrees deviation, where the sensor start to report constant obstruction.

© 2025 by Acconeer AB - All rights reserved Page 15 of 16

A121 Parking Reference Application User Guide

11 Disclaimer

The information herein is believed to be correct as of the date issued. Acconeer AB (“Acconeer”) will not be responsible
for damages of any nature resulting from the use or reliance upon the information contained herein. Acconeer makes no
warranties, expressed or implied, of merchantability or fitness for a particular purpose or course of performance or usage
of trade. Therefore, it is the user’s responsibility to thoroughly test the product in their particular application to
determine its performance, efficacy and safety. Users should obtain the latest relevant information before placing orders.

Unless Acconeer has explicitly designated an individual Acconeer product as meeting the requirement of a particular
industry standard, Acconeer is not responsible for any failure to meet such industry standard requirements.

Unless explicitly stated herein this document Acconeer has not performed any regulatory conformity test. It is the user’s
responsibility to assure that necessary regulatory conditions are met and approvals have been obtained when using the
product. Regardless of whether the product has passed any conformity test, this document does not constitute any
regulatory approval of the user’s product or application using Acconeer’s product.

Nothing contained herein is to be considered as permission or a recommendation to infringe any patent or any other
intellectual property right. No license, express or implied, to any intellectual property right is granted by Acconeer
herein.

Acconeer reserves the right to at any time correct, change, amend, enhance, modify, and improve this document and/or
Acconeer products without notice.

This document supersedes and replaces all information supplied prior to the publication hereof.

© 2025 by Acconeer AB - All rights reserved Page 16 of 16

	Acconeer SDK Documentation Overview
	Introduction
	Your First Measurement
	Exploration Tool
	Embedded C

	Configuration
	Presets
	Further Configuration

	Physical Integration
	Calibration
	Reference Application Output
	Algorithm Signal Processing
	Signature
	Obstruction Detection
	Calibration

	Memory and Power Consumption
	Memory
	Power Consumption

	Test Results
	Temperature
	Obstruction Detection

	Disclaimer

