
A121 Presence Detector
User Guide

A121 Presence Detector

A121 Presence Detector

User Guide

Author: Acconeer AB

Version:a121-v1.10.0

Acconeer AB March 26, 2025

© 2025 by Acconeer AB - All rights reserved Page 2 of 15

A121 Presence Detector

Contents

1 Acconeer SDK Documentation Overview 4

2 Presence Detector 5
2.1 How to use . 5
2.2 Detailed description . 7
2.3 Hints and Recommendations . 11

3 C API 12
3.1 Configuration . 12
3.2 Detector Result . 13
3.3 Memory . 13
3.4 Power Consumption . 14

4 Disclaimer 15

© 2025 by Acconeer AB - All rights reserved Page 3 of 15

A121 Presence Detector

1 Acconeer SDK Documentation Overview

To better understand what SDK document to use, a summary of the documents are shown in the table below.

Table 1: SDK document overview.

Name Description When to use
RSS API documentation (html)

rss_api The complete C API documentation. - RSS application implementation
- Understanding RSS API functions

User guides (PDF)

A121 Assembly Test Describes the Acconeer assembly
test functionality.

- Bring-up of HW/SW
- Production test implementation

A121 Breathing
Reference Application

Describes the functionality of the
Breathing Reference Application.

- Working with the Breathing
Reference Application

A121 Distance Detector Describes usage and algorithms
of the Distance Detector. - Working with the Distance Detector

A121 SW Integration
Describes how to implement each
integration function needed to use
the Acconeer sensor.

- SW implementation of
custom HW integration

A121 Presence Detector Describes usage and algorithms
of the Presence Detector. - Working with the Presence Detector

A121 Smart Presence
Reference Application

Describes the functionality of the
Smart Presence Reference Application.

- Working with the Smart Presence
Reference Application

A121 Sparse IQ Service Describes usage of the Sparse IQ
Service. - Working with the Sparse IQ Service

A121 Tank Level
Reference Application

Describes the functionality of the
Tank Level Reference Application.

- Working with the Tank Level
Reference Application

A121 Touchless Button
Reference Application

Describes the functionality of the
Touchless Button Reference Application.

- Working with the Touchless Button
Reference Application

A121 Parking
Reference Application

Describes the functionality of the
Parking Reference Application.

- Working with the Parking
Reference Application

A121 STM32CubeIDE
Describes the flow of taking an
Acconeer SDK and integrate into
STM32CubeIDE.

- Using STM32CubeIDE

A121 Raspberry Pi Software Describes how to develop for
Raspberry Pi. - Working with Raspberry Pi

A121 Ripple Describes how to develop for
Ripple.

- Working with Ripple
on Raspberry Pi

XM125 Software Describes how to develop for
XM125. - Working with XM125

XM126 Software Describes how to develop for
XM126. - Working with XM126

I2C Distance Detector Describes the functionality of the
I2C Distance Detector Application.

- Working with the
I2C Distance Detector Application

I2C Presence Detector Describes the functionality of the
I2C Presence Detector Application.

- Working with the
I2C Presence Detector Application

I2C Breathing Reference Application Describes the functionality of the
I2C Breathing Reference Application.

- Working with the
I2C Breathing Reference Application

A121 Radar Data and Control (PDF)

A121 Radar Data and Control
Describes different aspects of the
Acconeer offer, for example radar
principles and how to configure

- To understand the Acconeer sensor
- Use case evaluation

Readme (txt)

README Various target specific information
and links - After SDK download

© 2025 by Acconeer AB - All rights reserved Page 4 of 15

A121 Presence Detector

2 Presence Detector

This presence detector measures changes in the data over time to detect motion. It is divided into two separate parts:

Intra-frame presence – detecting (faster) movements inside frames
For every frame and depth, the intra-frame deviation is based on the deviation from the mean of the sweeps

Inter-frame presence – detecting (slower) movements between frames
For every frame and depth, the absolute value of the mean sweep is filtered through a fast and a slow low pass filter.
The inter-frame deviation is the deviation between the two filters and this is the base of the inter-frame presence.
As an additional processing step, it is possible to make the detector even more sensitive to very slow motions, such
as breathing. This utilizes the phase information by calculating the phase shift in the mean sweep over time. By
weighting the phase shift with the mean amplitude value, the detection of slow moving objects will increase.

Both the inter- and the intra-frame deviations are filtered in time. Also, to be more robust against changing environments
and variations between sensors, normalization is done against the noise floor. Finally, the output from each part is the
maximum value in the measured range.

Presence detected is defined as either inter- or intra-frame detector having a presence score above chosen thresholds.

2.1 How to use

Tuning the sensor parameters

A large part of the presence detector consists of automatic configuration of the sensor parameters. This can of course be
overridden, but it is recommended to use the automatic configuration for best performance.

Detection Range

The most important parameter that the user needs to adjust is the range: start_m and end_m . The start parameter
has a major effect on the automatic configuration, it is therefore important to adjust the start point to be as far from the
sensor as possible, while still fulfilling the requirements for the use case. Avoid adding range close to the sensor without
justification, since this will have negative impact on both power consumption and performance. The end_m parameter
should also not be further away from the sensor than the use case requires. A common pitfall is to have an unnecessarily
long range, which can have unexpected effects, for example detections from static objects and walls in the background.
When a person moves around, a wall might suddenly “appear” after being blocked by the person. This will have the effect
that the wall then appears to be moving and be detected by the presence detector.

Automatic Subsweep Selection

If the automatic_subsweeps is set to True, the sensor will automatically be configured with several subsweeps with
different hwaas and possibly different profile for each subsweep. This is the recommended way to configure the
detector, since it minimizes power consumption as well as smoothing out detection levels over distances.

When using the automatic subsweep selection, we still need to set the signal_quality parameter. The higher signal
quality, the higher power consumption. It is recommended to set the value so that the highest HWAAS is different for the
furthest subsweeps, i.e. if both subsweep 3 and 4 have maximized HWAAS to 511, this means that the signal quality is
better for subsweep 3 than for subsweep 4.

Configuring the sensor manually

If the automatic subsweep selection is not activated, a single subsweep will instead be used. This means that the same
profile and hwaas will be used for the whole range. The limiting factor will be the start_m , which determines which
profile can be used. The profile is set to the biggest profile with no direct leakage in the chosen range. This is to maximize
SNR. The shortest start range needed for the different profiles can be found in Table 2:

Table 2: Minimum start range for different profiles.
Profile Start range
1 0 m
2 0.14 m
3 0.28 m
4 0.38 m
5 0.64 m

© 2025 by Acconeer AB - All rights reserved Page 5 of 15

A121 Presence Detector

Note

To maximize SNR in long range detections, the start range needs to be set to at least 0.64 m.

For each profile a half power pulse width can be calculated based on the pulse length. We choose the step_length to
not exceed this value, while still having it as long as possible. We want the step length as long as possible to reduce power
consumption, but short enough to get good SNR in the whole range. Choosing a high number of hwaas will increase
SNR. However, it will also affect the power consumption. Choose the highest possible HWAAS that still fulfills your
power requirements. A good starting point is to use the default value. For better use of the intra-frame presence detector,
increase the number of sweeps_per_frame . This will improve the sensitivity.

Tuning the detector parameters

To adjust overall sensitivity, the easiest way is to change the thresholds. There are separate thresholds for the inter-
frame and the intra-frame parts, inter_detection_threshold and intra_detection_threshold . If only one of
the motion types is of interest, the intra-frame and inter-frame presence can be run separately, otherwise they can be run
together. The detection types are enabled with the inter_enable and intra_enable parameters.

For slow motion detection, there is the possibility to use inter_phase_boost to increase sensitivity. This will increase
detection for someone sitting still and breathing, even if the sensor is not placed in an optimal position. However, have in
mind that it will increase detection of all slow moving objects.

If a stable detection and fast loss of detection is important, for example when a person is leaving the sensor coverage, the
inter_frame_presence_timeout functionality can be enabled. If the inter-frame presence score has declined during
a complete timeout period, the score is scaled down to get below the threshold faster.

Advanced detector parameters

Another way to adjust overall sensitivity is to change the output time constants. Increase time constants to get a more
stable output or decrease for faster response.

Fast motions - looking for a person walking towards or away from the sensor
The intra-frame part has two parameters: intra_frame_time_const and intra_output_time_const .

Look at the depthwise presence plot in the GUI. If it can’t keep up with the movements, try decreasing the intra
frame time constant. Instead, if it flickers too much, try increasing the time constant. Furthermore, if the presence
score output flickers too much, try increasing the intra output time constant, while on the other hand decreasing it
will give faster detection.

Slow motions - looking for a person resting on a sofa
For the base functionality, the inter-frame part has four parameters: inter_frame_slow_cutoff ,
inter_frame_fast_cutoff , inter_frame_deviation_time_const , and inter_output_time_const .

The inter-frame slow cutoff frequency determines the lower frequency cutoff in the filtering. If it is set too low,
unnecessary noise might be included, which gives a higher noise floor, thus decreasing sensitivity. On the other
hand, if it is set too high, some very slow motions might not be detected.

The inter-frame fast cutoff frequency determines the higher bound of the frequency filtering. If it is set too low,
some faster motions might not be detected. However, if it is set too high, unnecessary noise might be included.
Values larger than half the frame_rate disables this filter. If that is not enough, you need a higher frame rate or to
use the intra-frame part.

Inter-frame phase boost
To increase detection of very slow motions inter_phase_boost can be enabled.

Inter-frame timeout
For faster loss of detection, inter_frame_presence_timeout can be used. This regulates the number of seconds
needed with decreasing inter-frame presence score before the score starts to get scaled down faster. If set to low,
the score might drop when a person sits still and breathes slowly. If set very high, it will have no effect.

© 2025 by Acconeer AB - All rights reserved Page 6 of 15

A121 Presence Detector

2.2 Detailed description

The sparse IQ service service returns data frames in the form of Ns sweeps, each consisting of Nd range distance points,
see Frames, sweeps and subsweeps. We denote frames captured using the sparse IQ service as x(f ,s,d), where f denotes
the frame index, s the sweep index and d the range distance index.

Intra-frame detection basis

For very fast motions and fast detection we have the intra-frame presence detection. The idea is simple – for every frame
we depth-wise take the deviation from the sweep mean and low pass (smoothing) filter it.

Let Ns denote the number of sweeps, and let the deviation from the mean be:

sintra_dev(f ,d) =

√
Ns

Ns−1
· 1

Ns
∑
s
|x(f ,s,d)− y(f ,d)|

where the first factor is a correction for the limited number of samples (sweeps).

Then, let the low pass filtered (smoothed) version be:

s̄intra_dev(f ,d) = αintra_dev · s̄intra_dev(f −1,d)+(1−αintra_dev) · sintra_dev(f ,d)

The smoothing factor αintra is set through the intra_frame_time_const parameter.

The relationship between time constant and smoothing factor is described under Calculating smoothing factors.

The intra-frame deviation is normalized with a noise estimate.

Inter-frame detection basis

In the typical case, the time between frames is far greater than the time between sweeps. Typically, the frame rate is 2 -
100 Hz while the sweep rate is 3 - 30 kHz. Therefore, when looking for slow movements in presence, the sweeps in a
frame can be regarded as being sampled at the same point in time. This allows us to take the mean value over all sweeps
in a frame, without losing any information. In the basic part of the inter frame presence, we only use the amplitude value.
Let the absolute mean sweep be denoted as

y(f ,d) = | 1
Ns

∑
s

x(f ,s,d)|

We take the mean sweep y and depth-wise run it through two exponential smoothing filters (first order IIR low pass filters).
One slower filter with a larger smoothing factor, and one faster filter with a smaller smoothing factor. Let αfast and αslow
be the smoothing factors and ȳfast and ȳslow be the filtered sweep means. For every depth d in every new frame f :

ȳslow(f ,d) = αslow · ȳslow(f −1,d)+(1−αslow) · y(f ,d)

ȳfast(f ,d) = αfast · ȳfast(f −1,d)+(1−αfast) · y(f ,d)

The relationship between cutoff frequency and smoothing factor is described under Calculating smoothing factors.

From the fast and slow filtered absolute sweep means, a deviation metric sinter_dev is obtained by taking the absolute
deviation between the two:

sinter_dev(f ,d) =
√

Ns · |ȳfast(f ,d)− ȳslow(f ,d)|

Where
√

Ns is a normalization constant. In other words, sinter_dev relates to the instantaneous power of a band-pass
filtered version of y. This metric is then filtered again with a smoothing factor, αinter_dev, set through the
inter_frame_deviation_time_const parameter, to get a more stable metric:

s̄inter_dev(f ,d) = αinter_dev · s̄inter_dev(f −1,d)+(1−αinter_dev) · sinter_dev(f ,d)

This is the basis of the inter-frame presence detection. As with the intra-frame deviation, it’s favorable to normalize this
with the noise floor.

© 2025 by Acconeer AB - All rights reserved Page 7 of 15

https://docs.acconeer.com/en/latest/radar_data_and_control/a121/sweeps_and_frames.html

A121 Presence Detector

Inter-frame phase boost

To increase detection of very slow motions, we utilize the phase information in the Sparse IQ data. The first step is to
calculate the phase shift over time. Let u(f ,d) be the mean sweep:

u(f ,d) =
1
Ns

∑
s

x(f ,s,d)

The mean sweep is low pass filtered and the smoothing factor, αfor_phase, is set from a fixed and quite high time constant,
τ f or_phase, of 5 s:

ūfor_phase(f ,d) = αfor_phase · ūfor_phase(f −1,d)+(1−αfor_phase) ·u(f ,d)

When a new frame is sampled, we take the mean sweep and calculate the phase shift between this mean sweep and the
previous low pass filtered mean sweep. We define the phase shift to never exceed π radians by adding 2πk for some
integer k:

φ(f ,d) = |angle(u(f ,d))−angle(ūfor_phase(f ,d))+2πk|

In open air where only noise is measured, the phase will jump around. To amplify the phase shift boost for human
breathing, while at the same time decreasing it for open air, the phase shift is weighted with the amplitude. For a more
stable weighting, the mean sweep is low pass filtered before the amplitude is calculated:

ūfor_amp(f ,d) = αinter_dev · ūfor_amp(f −1,d)+(1−αinter_dev) ·u(f ,d)

A(f ,d) = |ūfor_amp(f ,d)|

The amplitude is noise normalized(see next section) and truncated to reduce unwanted detections from very strong static
objects:

A(f ,d) = max(A(f ,d),15)

Before the final output is generated, the depth-wise inter-frame presence score is multiplied with the phase and amplitude
weight:

s̄inter_dev(f ,d) = s̄inter_dev(f ,d) ·φ(f ,d) ·A(f ,d)

Noise estimation

To normalize detection levels, we need an estimate of the noise power generated by the sensor. We assume that from a
static channel, i.e., a radar signal with no moving reflections, the noise is white and its power is its variance. However, we
do not want to rely on having such a measurement to obtain this estimate.

Since we’re looking for motions generated by humans and other living things, we know that we typically won’t see fast
moving objects in the data. In other words, we may assume that high frequency content in the data originates from sensor
noise. Since we have a relatively high sweep rate, we may take advantage of this to measure high frequency content.

Extracting the high frequency content from the data can be done in numerous ways. The simplest to implement is possibly
a FFT, but it is computationally expensive. Instead, we use another technique which is both robust and cheap.

First, to remove any trends from fast motion in the frame, we differentiate over the sweeps Ndiff = 3 times:

x′(f ,s,d) = x(1)(f ,s,d) = x(f ,s,d)− x(f ,s−1,d)

...

x(Ndiff)(f ,s,d) = x(Ndiff−1)(f ,s,d)− x(Ndiff−1)(f ,s−1,d)

Then, take the mean absolute deviation:

n̂(f ,d) =
1

Ns−Ndiff

Ns

∑
s=1+Ndiff

|x(Ndiff)(f ,s,d)|

And normalize such that the expectation value would be the same as if no differentiation was applied:

n(f ,d) = n̂(f ,d) ·

[
Ndiff

∑
k=0

(
Ndiff

k

)2
]−1/2

© 2025 by Acconeer AB - All rights reserved Page 8 of 15

A121 Presence Detector

Finally, apply an exponential smoothing filter with a smoothing factor αnoise to get a more stable metric:

n̄(f ,d) = αnoise · n̄(f −1,d)+(1−αnoise) ·n(f ,d)

This smoothing factor is set from a fixed time constant of 10 s.

Both the intra-frame deviation, s̄intra_dev(f ,d), and the inter-frame deviation, s̄inter_dev(f ,d), as well as the amplitude in
the inter-frame phase boost is normalized by the noise estimate, n̄(f ,d), as:

s̄(f ,d) =
s̄(f ,d)
n̄(f ,d)

Output and distance estimation

The outputs from the noise normalized intra-frame deviation and inter-frame deviation are the maximum scores of the
respective deviation:

v(f) = max
d

(z(f ,d))

As a final step, the outputs are low pass filtered:

v̄(f) = αoutput · v̄(f −1)+(1−αoutput) · v(f)

The smoothing factors for the outputs are set through the intra_output_time_const and the
inter_output_time_const parameters.

When both detectors are enabled, presence is defined as either the intra-frame or the inter-frame being over the threshold.
If both have detection, the faster nature of intra-frame presence compared to inter-frame presence makes it best practice to
use this score to estimate distance. If only one part has detection we will use this for the distance estimate. The estimate
is based on the peak value in the data. Let p be the “present”/”not present” output and dp be the presence depth index
output:

p = v > vthreshold

dp = argmax
d

(z(f ,d))

Inter-frame timeout

For faster decline of the inter-frame presence score, an exponential scaling of the score starts after t seconds determined
by the inter_frame_presence_timeout parameter. We track the number of frames with declining score, n. With the
frame rate defined as f f , the scale factor, Cinter, is calculated as:

Cinter = exp
(

max(n− (t · f f),0)
t · f f

)
And the inter-frame presence score is scaled as:

v̄inter(f) =
v̄inter(f)

Cinter

To reduce the effect of the inter-frame phase boost when the score is scaled, the time constant, τfor_phase, controlling the
smoothing factor αfor_phase, is scaled in a similar way. With scale factor Cτ , the time constant, τscaled, is calculated as:

Cτ = exp
(

max(n− (t · f f),0) · τfor_phase

t

)
τscaled =

τfor_phase

Cτ

© 2025 by Acconeer AB - All rights reserved Page 9 of 15

A121 Presence Detector

Graphical overview

Inter-frame
presence

Intra-frame
presence

Noise estimation
depthwise

Inter-frame phase boost
depthwise

Absolute mean
over sweeps

Fast LPF Slow LPF

Difference

Absolute
value

LPF

Noise
normalization

argmax
over

depths

Phase
boost

weighting

Combine distance
estimate

max
over depths

LPF

Compare against
previous score

Timeout scaling

Compare
against

threshold

Combine presence
detection

Deviation
over sweeps

Absolute
value

LPF

Noise
normalization

argmax
over

depths

max
over

depths

LPF

Compare against
threshold

Differentiate
over sweeps

3 times

Absolute
deviation

Compensate
for

differentiation

LPF

Noise
normalization

LPF

Phase
shift

Mean
phase
over

sweeps

Multiplication

LPF

Mean amplitude
over sweeps

Truncate values

Input frame

Output

© 2025 by Acconeer AB - All rights reserved Page 10 of 15

A121 Presence Detector

Calculating smoothing factors

Instead of directly setting the smoothing factor of the smoothing filters in the detector, we use cutoff frequencies and time
constants. This allows the configuration to be independent of the frame rate.

The symbols used are:

Symbol Description Unit
α Smoothing factor 1
τ Time constant s
fc Cutoff frequency Hz
f f Frame rate Hz

Going from time constant τ to smoothing factor α:

α = exp
(
− 1

τ · f f

)
The bigger the time constant, the slower the filter.

Going from cutoff frequency fc to smoothing factor α:

α =

{
2− cos(2π fc/ f f)−

√
cos2(2π fc/ f f)−4cos(2π fc/ f f)+3 if fc < f f /2

0 otherwise

The lower the cutoff frequency, the slower the filter. The expression is obtained from setting the -3 dB frequency of
the resulting exponential filter to be the cutoff frequency. For low cutoff frequencies, the more well known expression
α = exp(−2π fc/ f f) is a good approximation.

Read more: time constants, cutoff frequencies.

2.3 Hints and Recommendations

This section contains some practical considerations for how to configure the presence detector optimally.

Range settings

Start by estimating the range settings for your use-case. A common pitfall is to let the range be too extensive, which can
lead to the detector triggering from movement in unexpected locations. In a similar manner, setting the range too close to
the sensor can cause the automatic configuration to dedicate unnecessary resources to search in ranges where there won’t
be any movement. So aim to let the range cover the range where the movement is expected to occur, but not beyond that.

When the range settings have been selected, it is recommended to use the subsweep selection to set the appropriate values
for HWAAS and profile.

An interesting phenomenon that occurs when the range is longer than necessary is indirect detections from movement. If
an object blocking the sensor is removed, this might cause an object further away (like a wall) to suddenly appear after
being blocked. This will be interpreted as movement, since the object moved into view.

Adjusting Threshold

The threshold is very dependent on the use case, the most natural way to adjust this is by testing relevant scenarios. A
too low threshold will cause false positives from unwanted movement. Setting the threshold too high will cause missed
detections instead. A good starting point is to estimate roughly what the noise level is for your use case. This is done by
measuring an empty channel and observing the highest presence score during the measurement, any threshold below this
value will be completely useless, since it will constantly trigger false detections.

Smoothing filter and latency

When the threshold and range settings are deemed satisfactory, the smoothing filters can be addressed. The smoothing
filters have a direct impact on the latency of the detector. The trade-off is between latency and retention, a long filter
will take more time to detect a movement, but retain detection and avoid “flickering” behavior. A short filter will drop
detection more frequently, but also gain detection faster. This is a general behavioral aspect of the detector, which should
be adjusted according to the use case. For some applications, it might be relevant to have retention built into an application
on top of the detector instead of using the built in filters.

© 2025 by Acconeer AB - All rights reserved Page 11 of 15

https://en.wikipedia.org/wiki/Exponential_smoothing#Time_constant
https://www.dsprelated.com/showarticle/182.php

A121 Presence Detector

3 C API

The focus of this section is the Presence Detector C API.

It is recommended to read this section together with example_detector_presence.c located in the SDK package. The full
API specification, rss_api.html, provided in the SDK package is also good to read.

The Presence Detector will utilize a single sensor configuration with multiple sweeps in every frame to detect motion.

3.1 Configuration

The Presence Detector is controlled using configuration parameters. All parameters will be shown in Table 3 but some
will be described in more detail in this section.

automatic_subsweeps Automatic subsweps will divide the measurement range in different subsweeps to optimize
profile, step_length and hwaas. signal_quality is only used when automatic_subsweeps is enabled
and it will affect hwaas to increase or decrease the signal quality. automatic_subsweeps will disable the
following settings in the detector:

• auto_profile_enabled

• auto_step_length_enabled

• manual_profile

• manual_step_length

• hwaas

It will also invalidate the following parts in the metadata, since they will be different for different subsweeps:

• step_length_m

• profile

auto_profile_enabled By default, the best fit for the profile is calculated from the start of the range, start_m. This can
be overridden by setting auto_profile_enabled to false and setting manual_profile.

auto_step_length_enabled By default, the best fit for the step_length is calculated from the profile. This can be
overridden by setting auto_step_length_enabled to false and setting manual_step_length.

frame_rate_app_driven By default, the frame_rate is maintained by the sensor. In the low power use case when one
wants to disable the sensor between measurements, the application will have to make sure the measurements are
performed at the rate set by frame_rate.

Presets

The Presence Detector in example_detector_presence.c is configured through presets. A preset is a set of configuration
parameters tuned for a certain use case. The presets used in this example are Medium Range, Short Range, Long Range,
and Low Power Wakeup. Default preset is Medium Range.

Configuration Parameters

Name Type Default Value Min Max
inter_frame_presence_timeout uint16_t 3
inter_phase_boost_enabled bool false n/a n/a
intra_detection_enabled bool true n/a n/a
inter_detection_enabled bool true n/a n/a
intra_detection_threshold float 1.3 0.0 5.0
inter_detection_threshold float 1.0 0.0 5.0
inter_frame_deviation_time_const float 0.5 0.01 20.0
inter_frame_fast_cutoff float 6.0 1.0 50.0
inter_frame_slow_cutoff float 0.2 0.01 1.0
intra_frame_time_const float 0.15 0.0 1.0
intra_output_time_const float 0.3 0.01 20.0
inter_output_time_const float 2.0 0.01 20.0
sensor_id sensor id 1 n/a n/a

© 2025 by Acconeer AB - All rights reserved Page 12 of 15

A121 Presence Detector

auto_profile_enabled bool true n/a n/a
auto_step_length_enabled bool true n/a n/a
manual_profile enum profile_1 profile_1 profile_5
manual_step_length uint16_t 24
start_m float 0.3 < end_m
end_m float 2.5 > start_m
sweeps_per_frame uint16_t 16
hwaas uint16_t 32 1 511
inter_frame_idle_state enum idle_state_deep_sleep idle_state_deep_sleep idle_state_ready
frame_rate float 12.0
frame_rate_app_driven bool false n/a n/a
reset_filters_on_prepare bool true n/a n/a
automatic_subsweeps bool true n/a n/a
signal_quality float 20.0 -10.0 60.0

Table 3: Presence Detector Configuration Parameters

3.2 Detector Result

The result from a call to acc_detector_presence_process() includes both the presence result as well as the complete Sparse
IQ Service result. This section will only describe the presence result.

result member type description

presence_detected bool true if presence was detected, false otherwise
intra_presence_score float A measure of the amount of fast motion detected
intra_presence_score float A measure of the amount of slow motion detected
presence_distance float The distance, in meters, to the detected object
depthwise_intra_presence_scores float array An array of measures of the amount of fast motion

detected per distance point.
depthwise_inter_presence_scores float array An array of measures of the amount of slow motion

detected per distance point.
depthwise_presence_scores_length uint32_t The number of elements in the depthwise presence scores

arrays
processing_result struct Described in Sparse IQ Service User Guide

3.3 Memory

Flash

The example application compiled from example_detector_presence.c on the XM125 module requires around 80 kB.

RAM

The RAM can be divided into three categories, static RAM, heap, and stack. Below is a table for approximate RAM for
an application compiled from example_detector_presence.c for different presets.

RAM Size (kB)

Preset Medium Short Long Wakeup
Static 1 1 1 1
Heap 6 6 6 4
Stack 4 4 4 4
Total 11 11 11 9

Note that the heap is very dependent on the preset. The configurations that have the largest impact on the memory are
start_m, end_m, step_length and sweeps_per_frame.

© 2025 by Acconeer AB - All rights reserved Page 13 of 15

A121 Presence Detector

3.4 Power Consumption

The example application compiled from example_detector_presence_low_power_hibernate.c on the XM125 module has
an average current of 5.3 mA.

The example application compiled from example_detector_presence_low_power_hibernate.c with preset Low Power
Wakeup has an average current of 0.07 mA on the XM125 module.

© 2025 by Acconeer AB - All rights reserved Page 14 of 15

A121 Presence Detector

4 Disclaimer

The information herein is believed to be correct as of the date issued. Acconeer AB (“Acconeer”) will not be responsible
for damages of any nature resulting from the use or reliance upon the information contained herein. Acconeer makes no
warranties, expressed or implied, of merchantability or fitness for a particular purpose or course of performance or usage
of trade. Therefore, it is the user’s responsibility to thoroughly test the product in their particular application to
determine its performance, efficacy and safety. Users should obtain the latest relevant information before placing orders.

Unless Acconeer has explicitly designated an individual Acconeer product as meeting the requirement of a particular
industry standard, Acconeer is not responsible for any failure to meet such industry standard requirements.

Unless explicitly stated herein this document Acconeer has not performed any regulatory conformity test. It is the user’s
responsibility to assure that necessary regulatory conditions are met and approvals have been obtained when using the
product. Regardless of whether the product has passed any conformity test, this document does not constitute any
regulatory approval of the user’s product or application using Acconeer’s product.

Nothing contained herein is to be considered as permission or a recommendation to infringe any patent or any other
intellectual property right. No license, express or implied, to any intellectual property right is granted by Acconeer
herein.

Acconeer reserves the right to at any time correct, change, amend, enhance, modify, and improve this document and/or
Acconeer products without notice.

This document supersedes and replaces all information supplied prior to the publication hereof.

© 2025 by Acconeer AB - All rights reserved Page 15 of 15

	Acconeer SDK Documentation Overview
	Presence Detector
	How to use
	Tuning the sensor parameters
	Detection Range
	Automatic Subsweep Selection
	Configuring the sensor manually
	Tuning the detector parameters
	Advanced detector parameters

	Detailed description
	Intra-frame detection basis
	Inter-frame detection basis
	Inter-frame phase boost
	Noise estimation
	Output and distance estimation
	Inter-frame timeout
	Graphical overview
	Calculating smoothing factors

	Hints and Recommendations
	Range settings
	Adjusting Threshold
	Smoothing filter and latency

	C API
	Configuration
	Presets
	Configuration Parameters

	Detector Result
	Memory
	Flash
	RAM

	Power Consumption

	Disclaimer

