
A121 Ripple
User Guide

A121 Ripple

A121 Ripple

User Guide

Author: Acconeer AB

Version:a121-v1.12.0

Acconeer AB October 15, 2025

© 2025 by Acconeer AB - All rights reserved Page 1 of 10

A121 Ripple

Contents

1 Acconeer SDK Documentation Overview 3

2 Introduction 5

3 Ripple Porting Layer 6
3.1 API Mapping . 6
3.2 Main Radar Parameters . 7
3.3 RX Radar Parameters . 7
3.4 Vendor Radar Parameters . 7
3.5 Radar Measurement Loop . 7

3.5.1 Radar Data Format . 8
3.6 Radar State . 8
3.7 Functions Not Supported . 8
3.8 Limitations . 9
3.9 Example Application . 9

4 Disclaimer 10

© 2025 by Acconeer AB - All rights reserved Page 2 of 10

A121 Ripple

1 Acconeer SDK Documentation Overview

To better understand what SDK document to use, a summary of the documents are shown in the table below.

Table 1: SDK document overview.

Name Description When to use
RSS API documentation (html)

rss_api The complete C API documentation. - RSS application implementation
- Understanding RSS API functions

User guides (PDF)

A121 Assembly Test Describes the Acconeer assembly
test functionality.

- Bring-up of HW/SW
- Production test implementation

A121 Breathing
Reference Application

Describes the functionality of the
Breathing Reference Application.

- Working with the Breathing
Reference Application

A121 Distance Detector Describes usage and algorithms
of the Distance Detector. - Working with the Distance Detector

A121 SW Integration
Describes how to implement each
integration function needed to use
the Acconeer sensor.

- SW implementation of
custom HW integration

A121 Presence Detector Describes usage and algorithms
of the Presence Detector. - Working with the Presence Detector

A121 Smart Presence
Reference Application

Describes the functionality of the
Smart Presence Reference Application.

- Working with the Smart Presence
Reference Application

A121 Sparse IQ Service Describes usage of the Sparse IQ
Service. - Working with the Sparse IQ Service

A121 Tank Level
Reference Application

Describes the functionality of the
Tank Level Reference Application.

- Working with the Tank Level
Reference Application

A121 Touchless Button
Reference Application

Describes the functionality of the
Touchless Button Reference Application.

- Working with the Touchless Button
Reference Application

A121 Parking
Reference Application

Describes the functionality of the
Parking Reference Application.

- Working with the Parking
Reference Application

A121 STM32CubeIDE
Describes the flow of taking an
Acconeer SDK and integrate into
STM32CubeIDE.

- Using STM32CubeIDE

A121 Raspberry Pi Software Describes how to develop for
Raspberry Pi. - Working with Raspberry Pi

A121 Ripple Describes how to develop for
Ripple.

- Working with Ripple
on Raspberry Pi

A121 ESP32 User Guide Describes how to develop with
A121 and ESP32 targets. - Working with ESP32 targets

XM125 Software Describes how to develop for
XM125. - Working with XM125

XM126 Software Describes how to develop for
XM126. - Working with XM126

I2C Distance Detector Describes the functionality of the
I2C Distance Detector Application.

- Working with the
I2C Distance Detector Application

I2C Presence Detector Describes the functionality of the
I2C Presence Detector Application.

- Working with the
I2C Presence Detector Application

I2C Breathing Reference Application Describes the functionality of the
I2C Breathing Reference Application.

- Working with the
I2C Breathing Reference Application

I2C Cargo Example Application Describes the functionality of the
I2C Cargo Example Application.

- Working with the
I2C Cargo Example Application

A121 Radar Data and Control (PDF)

A121 Radar Data and Control
Describes different aspects of the
Acconeer offer, for example radar
principles and how to configure

- To understand the Acconeer sensor
- Use case evaluation

Readme (txt)

README Various target specific information
and links - After SDK download

© 2025 by Acconeer AB - All rights reserved Page 3 of 10

A121 Ripple

© 2025 by Acconeer AB - All rights reserved Page 4 of 10

A121 Ripple

2 Introduction

Ripple™, hosted by the Consumer Technology Association (CTA)®, is an open-radar API standard to enable hardware
and software interoperability while accelerating the growth of applications for general purpose consumer radar.

Experts from across the silicon, sensing, automotive and electronics industries have come together to develop open and
standardized API interfaces for radar system development. The standardized API calls for general purpose radar that
enables interoperability and the rapid deployment of new applications.

Acconeer has been part of the group defining the API, and is fully compliant with Ripple 2.0 which, unlike previous
versions, supports pulsed radar.

© 2025 by Acconeer AB - All rights reserved Page 5 of 10

A121 Ripple

3 Ripple Porting Layer

First, let’s highlight some differences in the Ripple API naming compared to the RSS API.

• A ‘burst’ in Ripple is a ‘frame’ in RSS.

• ‘Samples per sweep’ in Ripple is ‘num_points’ in RSS.

• ‘Start offset’ in Ripple is ‘start_point’ in RSS.

3.1 API Mapping

The following table maps the API defined by Ripple to the functions used in RSS.

Ripple API RSS API Comment
radarInit acc_rss_hal_register -
radarDeinit - -

radarCreate
acc_config_create
acc_sensor_create
acc_sensor_calibrate

-

radarDestroy
acc_config_destroy
acc_sensor_destroy
acc_processing_destroy

-

radarGetState - See details in “Radar State”

radarTurnOn
acc_hal_integration_sensor_supply_on
acc_hal_integration_sensor_enable
acc_sensor_prepare

-

radarTurnOff
acc_hal_integration_sensor_disable
acc_hal_integration_sensor_supply_off -

radarGoSleep
acc_sensor_hibernate_on
acc_hal_integration_sensor_disable -

radarWakeUp
acc_hal_integration_sensor_enable
acc_sensor_hibernate_off -

radarGetNumConfigSlots - -
radarGetMaxActiveConfigSlots - Only one config supported currently
radarActivateConfig acc_processing_create -
radarDeactivateConfig acc_processing_destroy -
radarGetMainParam - See “Main Radar Parameters”
radarSetMainParam - See “Main Radar Parameters”
radarGetMainParamRange - See “Main Radar Parameters”
radarGetRxParam - See “RX Radar Parameters”
radarSetRxParam - See “RX Radar Parameters”
radarGetRxParamRange - See “RX Radar Parameters”
radarGetVendorParam - See “Vendor Radar Parameters”
radarSetVendorParam - See “Vendor Radar Parameters”
radarGetVendorParamRange - See “Vendor Radar Parameters”
radarStartDataStreaming - See “Radar Measurement Loop”
radarStopDataStreaming - See “Radar Measurement Loop”
radarIsBurstReady - See “Radar Measurement Loop”
radarReadBurst - See “Radar Measurement Loop”
radarSetBurstReadyCb - See “Radar Measurement Loop”
radarSetLogCb - -
radarGetSensorInfo - -
radarGetRadarApiVersion - -
radarLogSensorDetails acc_config_log -
radarSetLogLevel - -

© 2025 by Acconeer AB - All rights reserved Page 6 of 10

A121 Ripple

3.2 Main Radar Parameters

The following main parameters defined in the Ripple API are supported:

Ripple API RSS API

RADAR_PARAM_AFTERBURST_POWER_MODE
acc_config_inter_frame_idle_state_get
acc_config_inter_frame_idle_state_set

RADAR_PARAM_BURST_PERIOD_US
acc_config_frame_rate_get
acc_config_frame_rate_set

PULSED_PARAM_INTERSWEEP_POWER_MODE
acc_config_inter_sweep_idle_state_get
acc_config_inter_sweep_idle_state_set

PULSED_PARAM_SWEEP_PERIOD_US
acc_config_sweep_rate_get
acc_config_sweep_rate_set

PULSED_PARAM_SWEEPS_PER_BURST
acc_config_sweeps_per_frame_get
acc_config_sweeps_per_frame_set

PULSED_PARAM_SAMPLES_PER_SWEEP
acc_config_num_points_get
acc_config_num_points_set

PULSED_PARAM_START_OFFSET
acc_config_start_point_get
acc_config_start_point_set

PULSED_PARAM_PRF_IDX
acc_config_prf_get
acc_config_prf_set

3.3 RX Radar Parameters

The following RX parameter defined in the Ripple API is supported:

Ripple API RSS API

PULSED_RX_PARAM_VGA_IDX
acc_config_receiver_gain_get
acc_config_receiver_gain_set

3.4 Vendor Radar Parameters

The following vendor specific parameters defined in the Ripple API are supported:

Ripple API RSS API

PULSED_PARAM_STEP_LENGTH
acc_config_step_length_get
acc_config_step_length_set

PULSED_PARAM_HWAAS
acc_config_hwaas_get
acc_config_hwaas_set

PULSED_PARAM_PROFILE
acc_config_profile_get
acc_config_profile_set

PULSED_PARAM_ENABLE_TX
acc_config_enable_tx_get
acc_config_enable_tx_set

3.5 Radar Measurement Loop

The radar measurement loop is started by invoking radarStartDataStreaming.

When new radar data is ready to read, the RadarBurstReadyCB callback registered through radarSetBurstReadyCb is
invoked. It’s also possible to poll radarIsBurstReady.

Radar data is read using radarReadBurst.

The radar measurement loop is stopped by invoking radarStopDataStreaming.

The radar measurement loop consists of the following function calls towards RSS

© 2025 by Acconeer AB - All rights reserved Page 7 of 10

A121 Ripple

acc_sensor_measure (...)

while (! not_stopped)

{

acc_hal_integration_wait_for_sensor_interrupt (...);

acc_sensor_read (...);

acc_processing_execute (...);

acc_sensor_measure (...);

if (burst_ready_callback != NULL)

{

burst_ready_callback (...)

}

}

3.5.1 Radar Data Format

The data buffer you get from radarReadBurst provides radar data in a complex format. In order to make sense of the
data some kind of processing usually needs to be done. For more information about the burst format, see
docs.acconeer.com.

3.6 Radar State

The state of the radar can be read out by invoking radarGetState. The state is determined by the following finite state
machine.

Figure 1: Radar state

3.7 Functions Not Supported

Ripple API
radarIsActiveConfig
radarGetTxParam
radarSetTxParam
radarGetTxParamRange
radarGetVendorTxParam
radarSetVendorTxParam
radarGetVendorTxParamRange
radarGetVendorRxParam
radarSetVendorRxParam
radarGetVendorRxParamRange
radarSetRegisterSetCb
radarCheckCountryCode

© 2025 by Acconeer AB - All rights reserved Page 8 of 10

https://docs.acconeer.com/en/latest/handbook/a121/sweeps_and_frames.html

A121 Ripple

radarGetTxPosition
radarGetRxPosition
radarGetAllRegisters
radarGetRegister
radarSetRegister

3.8 Limitations

The Ripple API doesn’t support the subsweep concept defined in the RSS API. If this is needed, the RSS API needs to be
used directly.

3.9 Example Application

It is recommended to use this Guide together with example_ripple.c located in the Acconeer Ripple package. This example
outlines the expected flow of the Ripple API as well as outputting radar data on stdout.

How to build the example is described in the ’A121 Raspberry Pi Software’ User Guide also available in the Acconeer
Ripple package.

The example application can be executed on RPi + XE121.

© 2025 by Acconeer AB - All rights reserved Page 9 of 10

A121 Ripple

4 Disclaimer

The information herein is believed to be correct as of the date issued. Acconeer AB (“Acconeer”) will not be responsible
for damages of any nature resulting from the use or reliance upon the information contained herein. Acconeer makes no
warranties, expressed or implied, of merchantability or fitness for a particular purpose or course of performance or usage
of trade. Therefore, it is the user’s responsibility to thoroughly test the product in their particular application to
determine its performance, efficacy and safety. Users should obtain the latest relevant information before placing orders.

Unless Acconeer has explicitly designated an individual Acconeer product as meeting the requirement of a particular
industry standard, Acconeer is not responsible for any failure to meet such industry standard requirements.

Unless explicitly stated herein this document Acconeer has not performed any regulatory conformity test. It is the user’s
responsibility to assure that necessary regulatory conditions are met and approvals have been obtained when using the
product. Regardless of whether the product has passed any conformity test, this document does not constitute any
regulatory approval of the user’s product or application using Acconeer’s product.

Nothing contained herein is to be considered as permission or a recommendation to infringe any patent or any other
intellectual property right. No license, express or implied, to any intellectual property right is granted by Acconeer
herein.

Acconeer reserves the right to at any time correct, change, amend, enhance, modify, and improve this document and/or
Acconeer products without notice.

This document supersedes and replaces all information supplied prior to the publication hereof.

© 2025 by Acconeer AB - All rights reserved Page 10 of 10

	Acconeer SDK Documentation Overview
	Introduction
	Ripple Porting Layer
	API Mapping
	Main Radar Parameters
	RX Radar Parameters
	Vendor Radar Parameters
	Radar Measurement Loop
	Radar Data Format

	Radar State
	Functions Not Supported
	Limitations
	Example Application

	Disclaimer

