
A121 STM32CubeIDE
User Guide

A121 STM32CubeIDE

A121 STM32CubeIDE

User Guide

Author: Acconeer AB

Version:a121-v1.12.0

Acconeer AB October 15, 2025

© 2025 by Acconeer AB - All rights reserved Page 1 of 29

A121 STM32CubeIDE

Contents

1 Acconeer SDK Documentation Overview 3

2 Introduction 5

3 Getting Started with STM32CubeIDE 6
3.1 MCU/Board Selection . 6
3.2 Project Setup . 7
3.3 Pin Configuration . 8

3.3.1 Pin Configuration with XE121 . 11
3.4 Interrupt Configuration . 12
3.5 GPIO Configuration . 12
3.6 XE121 Sensor Selection . 13
3.7 XE121 Single Sensor Setup . 13
3.8 SPI Configuration . 14
3.9 Code Generation . 14

4 Configuring Project for Acconeer Software 16
4.1 Adding Acconeer Software . 16

4.1.1 Source-files . 16
4.1.2 Header-files . 16
4.1.3 Libraries . 16

4.2 Project Settings . 17
4.3 Adding Print Functionality with UART/USART . 17

4.3.1 Find STM32 Board COM port . 17
4.3.2 Start and Configure PuTTY . 18

5 HAL Integration File 21
5.1 Selecting the Appropriate HAL-integration File . 21
5.2 A121_SPI_HANDLE . 21

6 Running a Radar Sensor Example 22
6.0.1 Running the Program . 22

7 Running the Exploration Server 23
7.1 STM32CubeMX . 23
7.2 STM32CubeIDE . 24

7.2.1 Running the Program . 25

8 Troubleshooting and FAQ 26
8.1 Example Fails . 26

8.1.1 Sensor Creation Returns NULL . 26
8.1.2 Config Creation Hardfaults . 26

8.2 The Program is Stuck in HAL_Delay . 26
8.3 Troubleshooting SPI Communication . 26
8.4 UART Problems . 27
8.5 Link Errors . 27
8.6 Heap Memory Corruption . 27

9 Disclaimer 29

© 2025 by Acconeer AB - All rights reserved Page 2 of 29

A121 STM32CubeIDE

1 Acconeer SDK Documentation Overview

To better understand what SDK document to use, a summary of the documents are shown in the table below.

Table 1: SDK document overview.

Name Description When to use
RSS API documentation (html)

rss_api The complete C API documentation. - RSS application implementation
- Understanding RSS API functions

User guides (PDF)

A121 Assembly Test Describes the Acconeer assembly
test functionality.

- Bring-up of HW/SW
- Production test implementation

A121 Breathing
Reference Application

Describes the functionality of the
Breathing Reference Application.

- Working with the Breathing
Reference Application

A121 Distance Detector Describes usage and algorithms
of the Distance Detector. - Working with the Distance Detector

A121 SW Integration
Describes how to implement each
integration function needed to use
the Acconeer sensor.

- SW implementation of
custom HW integration

A121 Presence Detector Describes usage and algorithms
of the Presence Detector. - Working with the Presence Detector

A121 Smart Presence
Reference Application

Describes the functionality of the
Smart Presence Reference Application.

- Working with the Smart Presence
Reference Application

A121 Sparse IQ Service Describes usage of the Sparse IQ
Service. - Working with the Sparse IQ Service

A121 Tank Level
Reference Application

Describes the functionality of the
Tank Level Reference Application.

- Working with the Tank Level
Reference Application

A121 Touchless Button
Reference Application

Describes the functionality of the
Touchless Button Reference Application.

- Working with the Touchless Button
Reference Application

A121 Parking
Reference Application

Describes the functionality of the
Parking Reference Application.

- Working with the Parking
Reference Application

A121 STM32CubeIDE
Describes the flow of taking an
Acconeer SDK and integrate into
STM32CubeIDE.

- Using STM32CubeIDE

A121 Raspberry Pi Software Describes how to develop for
Raspberry Pi. - Working with Raspberry Pi

A121 Ripple Describes how to develop for
Ripple.

- Working with Ripple
on Raspberry Pi

A121 ESP32 User Guide Describes how to develop with
A121 and ESP32 targets. - Working with ESP32 targets

XM125 Software Describes how to develop for
XM125. - Working with XM125

XM126 Software Describes how to develop for
XM126. - Working with XM126

I2C Distance Detector Describes the functionality of the
I2C Distance Detector Application.

- Working with the
I2C Distance Detector Application

I2C Presence Detector Describes the functionality of the
I2C Presence Detector Application.

- Working with the
I2C Presence Detector Application

I2C Breathing Reference Application Describes the functionality of the
I2C Breathing Reference Application.

- Working with the
I2C Breathing Reference Application

I2C Cargo Example Application Describes the functionality of the
I2C Cargo Example Application.

- Working with the
I2C Cargo Example Application

A121 Radar Data and Control (PDF)

A121 Radar Data and Control
Describes different aspects of the
Acconeer offer, for example radar
principles and how to configure

- To understand the Acconeer sensor
- Use case evaluation

Readme (txt)

README Various target specific information
and links - After SDK download

© 2025 by Acconeer AB - All rights reserved Page 3 of 29

A121 STM32CubeIDE

© 2025 by Acconeer AB - All rights reserved Page 4 of 29

A121 STM32CubeIDE

2 Introduction

In this document there will be a short guide with example on how to generate a project and setup the Acconeer software
in STM32CubeIDE.

The MCU board used as an example in this guide is a Nucleo-L476RG. We will show how to connect an XE121, including
the A121 radar sensor. There is some extra logic on the XE121 board to support multiple sensors that typically is not
present on boards with only one sensor. To show how a typical single sensor integration can be done, we have also
included some notes on how to use the XE121 in a single sensor setup.

STM32CubeIDE can be downloaded from the ST website at:
https://www.st.com/en/development-tools/stm32cubeide.html

This guide has been verified in Windows with STM32CubeIDE 1.19.0

© 2025 by Acconeer AB - All rights reserved Page 5 of 29

https://www.st.com/en/development-tools/stm32cubeide.html

A121 STM32CubeIDE

3 Getting Started with STM32CubeIDE

This section will cover how to setup a project in STM32CubeIDE, and make sure that the code works with the Acconeer
software.

Start STM32CubeIDE and click “Start new STM32 project”. The option is also available under “File → New →
STM32Project”.

Figure 1: Start new STM32CubeIDE project

When running on Linux/Ubuntu you might be asked about Connection Parameters, generally, you can skip this part by
selecting “No proxy”.

3.1 MCU/Board Selection

Search for the MCU or Board you are working with in the MCU Selector/Board Selector tab. In the example in this
document we use the board “NUCLEO-L476RG”. Start off by searching for “NUCLEO-L47” in the “Part Number
Search”-option at the top left in the Board Selector tab.

The board will show up in the “Boards list” at the bottom of the page. Click it. When clicking the board or MCU, you
will be given some information about it.

Make sure the “Nucleo-L476RG” board is selected and press the “Next”-button at the bottom of the page.

© 2025 by Acconeer AB - All rights reserved Page 6 of 29

A121 STM32CubeIDE

Figure 2: Target Selection

3.2 Project Setup

Select a name and location for your project and select the following options:

• Target language: C

• Target Binary type: Executable

• Target Project Type: STM32Cube

Finally, press the “Finish”-button at the bottom of the page.

© 2025 by Acconeer AB - All rights reserved Page 7 of 29

A121 STM32CubeIDE

Figure 3: Project Setup

Press “Yes” when you are asked if you want to initialize peripherals to their default mode.

Figure 4: Initialize Peripherals

Press “Yes” when you are asked if you want to open the STM32CubeMx perspective.

Figure 5: Open STM32CubeMX perspective

3.3 Pin Configuration

The Pinout is flexible – however it is important that the pins communicating with the radar have the right user labels and
that SPI is configured with “Full-Duplex Master”-mode.

In order to perform pin configuration you need to have the “.ioc”-file open that is named after your project.

© 2025 by Acconeer AB - All rights reserved Page 8 of 29

A121 STM32CubeIDE

The “LD2 [green Led]“ on the Nucleo board shares functionality with “SPI1_CLK“. Before we add SPI functionality we
need to remove the “LD2 [green Led]“ configuration from PA5. The pin configuration is removed by doing a left mouse
click on PA5 / “LD2 [green Led]“ and then selecting “Reset_State“.

Figure 6: Remove LD2 pin

The “B1 [Blue PushButton]“ on the Nucleo board is not used on our examples and can be removed. The pin configuration
is removed by doing a left mouse click on PC13 / “B1 [Blue PushButton]“ and then selecting “Reset_State“.

© 2025 by Acconeer AB - All rights reserved Page 9 of 29

A121 STM32CubeIDE

Figure 7: Remove B1 pin

In our example we activate SPI1 with “Full-Duplex Master”-mode by going into “Connectivity” in the “Pinout and
Configuration”-tab. Then by pressing “SPI1” the option of selecting mode is available, “Full-Duplex Master” is selected.
When doing this we get the SPI GPIOs:

© 2025 by Acconeer AB - All rights reserved Page 10 of 29

A121 STM32CubeIDE

Figure 8: SPI Setup

USER_LABEL NUCLEO PIN
SPI1_MOSI PA7
SPI1_MISO PA6
SPI1_SCK PA5

3.3.1 Pin Configuration with XE121

In order to set new GPIOs, you can left click the desired pin and selected the desired function of the pin.

The table below shows how the XE121 and the NUCLEO-board can be connected:

© 2025 by Acconeer AB - All rights reserved Page 11 of 29

A121 STM32CubeIDE

USER_LABEL NUCLEO PIN GPIO TYPE COMMENT
SEN_EN1 PB0 GPIO_Output
SEN_EN2 PB5 GPIO_Output Only needed for multi-sensor
SEN_EN3 PB3 GPIO_Output Only needed for multi-sensor
SEN_EN4 PA10 GPIO_Output Only needed for multi-sensor
SEN_EN5 PC1 GPIO_Output Only needed for multi-sensor

SPI1_MOSI PA7 SPI1_MOSI
SPI1_MISO PA6 SPI1_MISO
SPI1_SCK PA5 SPI1_SCK

A121_SPI_SS PB6 GPIO_Output
SPI_SEL0 PA4 GPIO_Output
SPI_SEL1 PA1 GPIO_Output
SPI_SEL2 PA0 GPIO_Output
SEN_INT1 PA9 GPIO_EXTI9
SEN_INT2 PA8 GPIO_EXTI8 Only needed for multi-sensor
SEN_INT3 PB10 GPIO_EXTI10 Only needed for multi-sensor
SEN_INT4 PB4 GPIO_EXTI4 Only needed for multi-sensor
SEN_INT5 PC0 GPIO_EXTI0 Only needed for multi-sensor

3.4 Interrupt Configuration

The NVIC interrupt for the SEN_INT1, SEN_INT2, SEN_INT3, SEN_INT4, SEN_INT5 pins should be enabled.

1. Select the GPIO item under the System Core.

2. Select the NVIC tab.

3. Tick the checkbox EXTI line0 interrupt.

4. Tick the checkbox EXTI line4 interrupt.

5. Tick the checkbox EXTI line[9:5] interrupt.

6. Tick the checkbox EXTI line[15:10] interrupt.

Figure 9: NVIC Configuration

3.5 GPIO Configuration

The GPIO signals from the processor to the sensor should be setup as outputs with very high drive strength.

1. Select the GPIO item under the System Core.

2. Select the GPIO tab.

3. Configure the GPIO pins accoring to the table below.

© 2025 by Acconeer AB - All rights reserved Page 12 of 29

A121 STM32CubeIDE

USER_LABEL NUCLEO PIN GPIO Output Level Maximum Output speed
SEN_EN1 PB0 Low Very High
SEN_EN2 PB5 Low Very High
SEN_EN3 PB3 Low Very High
SEN_EN4 PA10 Low Very High
SEN_EN5 PC1 Low Very High

A121_SPI_SS PB6 High Very High
SPI_SEL0 PA4 Low Very High
SPI_SEL1 PA1 Low Very High
SPI_SEL2 PA0 Low Very High

Figure 10: GPIO Configuration

3.6 XE121 Sensor Selection

The XE121 board has support for adding up to 4 extra A121 sensors by using FFC cables and XS121 boards. The selection
of which sensor to communicate with is done in the acc_hal_integration_xe121_multi_sensor.c file.

SPI_SEL2 SPI_SEL1 SPI_SEL0 Sensor Selection
LOW LOW LOW Sensor 1 (XE121)
LOW LOW HIGH Sensor 2 (XS121 S2)
LOW HIGH LOW Sensor 3 (XS121 S3)
LOW HIGH HIGH Sensor 4 (XS121 S4)
HIGH LOW LOW Sensor 5 (XS121 S5)

3.7 XE121 Single Sensor Setup

If the XE121 board is used in a single sensor setup there is no need to connect the following signals SEN_INT2,
SEN_INT3, SEN_INT4, SEN_INT5, SEN_EN2, SEN_EN3, SEN_EN4 and SEN_EN5.

Please note that SEN_SEL0, SEN_SEL1 and SEN_SEL2 need to be kept low to select the sensor onboard the
XE121.

The acc_hal_integration_xe121_multi_sensor.c should be replaced with the acc_hal_integration_xe121_single_sensor.c
file in the STM32CubeIDE project.

© 2025 by Acconeer AB - All rights reserved Page 13 of 29

A121 STM32CubeIDE

3.8 SPI Configuration

To make the SPI interface work properly with the Acconeer software you might need to set the Prescaler (for Baud Rate)
and Data Size.

Press the SPI you are using and under the Configuration menu you can change parameters. Under “Basic Parameters” you
can find that “Data Size” is set to 4 Bits by default, change this to 8 Bits.

Under “Clock Parameters” you will find “Prescaler”, this controls the frequency of the SPI bus. The higher the prescaler
value is, the lower the frequency will be. Depending on your setup, you might have to use different prescaler values
to fit your project. The A121 sensor supports SPI frequencies up to 50 MHz. In experimental configurations where the
sensor and MCU are not mounted on the same PCB, the maximum SPI frequency is often significantly lower and typically
around 10 MHz.

It is recommended to use the highest prescaler to begin with in order to make sure the SPI-communication is stable. Once
the communication works properly you can start trying lower prescalers in order to increase the frequency.

You might have to save the project and restart the program in order to access these settings.

Figure 11: SPI Master Config

3.9 Code Generation

Select Project/Generate Code to generate the driver and configuration MCU.

© 2025 by Acconeer AB - All rights reserved Page 14 of 29

A121 STM32CubeIDE

Figure 12: Generate code

© 2025 by Acconeer AB - All rights reserved Page 15 of 29

A121 STM32CubeIDE

4 Configuring Project for Acconeer Software

4.1 Adding Acconeer Software

There are different folders in the SDK zip:

• algorithms

• doc

• examples

• exploration_server

• integration

• rss

• use_cases

In the “doc”-folder you can find reference documentation of the Acconeer software. The “examples”-folder contains
examples of hwo to use the RSS API. The “use_cases”-folder contains example and reference apps for a specific use
cases. The “rss”-folder contains two subfolders called “include” and “lib”. The “lib”-folder contains the Radar System
Software (RSS) and the “include”-folder contains the header-files needed to use RSS. The “integration”-folder contains
files which connect RSS with the drivers generated by STM32CubeIDE. The “exploration_server”-folder contains the
files needed to build the exploration server application.

Start off by unpacking the zip-file into your project. Refresh the project by right clicking the project in the Project Explorer
and click “Refresh”. Make sure you can see the folder in your project before continuing.

4.1.1 Source-files

Now the integration-file which you want to use needs to be selected from the “cortex_m4_gcc/integration”-folder,

Copy/move the “acc_hal_integration_stm32cube_xe121_multi_sensor.c”-file you have selected into “Core/Src”-folder.
Also, copy content from “cortex_m4_gcc/algorithms” to “Core/Src”-folder. If you want any example or reference apps,
copy them from “cortex_m4_gcc/examples” or from “cortex_m4_gcc/use_cases” to “Core/Src”-folder.

Also move the “acc_integration_stm32.c“ and the “acc_integration_log.c“ files from the “cortex_m4_gcc/integration”-
folder to the “Core/Src”-folder.

For building the exploration server application you need to move the file “acc_exploration_server_stm32.c“ from the
“cortex_m4_gcc/exploration_server”-folder to the “Core/Src”-folder.

For this guide we select “example_service.c” and move it to the “Core/Src”-folder.

4.1.2 Header-files

1. Select your project in the “Project Explorer”

2. Go into “Project → Properties → C/C++ General → Paths and Symbols → Includes”

3. Press “Add...” and then “Workspace...”

4. Select the “cortex_m4_gcc/rss/include”-folder in your project

Repeat this procedure for the “cortex_m4_gcc/integration”-folder, the “cortex_m4_gcc/examples”-folder, the
“cortex_m4_gcc/use_cases”-folder and the “cortex_m4_gcc/exploration_server”-folder.

4.1.3 Libraries

In order to set the path for the libraries, do the following:

1. Select your project in the “Project Explorer”

2. Go into “Project → Properties → C/C++ General → Paths and Symbols → Library Paths”

3. Press “Add...” and then “Workspace...”

4. Select the “cortex_m4_gcc/rss/lib”-folder in your project

Once the path is set, you can add the specific libraries by the following:

1. Go into “Project → Properties → C/C++ General → Paths and Symbols → Libraries”

© 2025 by Acconeer AB - All rights reserved Page 16 of 29

A121 STM32CubeIDE

2. Click “Add...”

3. Write "acconeer_a121"

4. Click "OK"

If you want to add the “acc_detector_distance_a121” or “acc_detector_presence_a121” library, simply repeat the
procedure above and exchange “acconeer_a121” for “acc_detector_distance_a121” or “acc_detector_presence_a121”.
Make sure that the detector is being added before the “acconeer_a121”-library by moving “acconeer_a121” down using
the “Move Down” button when “acconeer_a121” is selected. If you want to build the exploration server application you
also have to add the “acconeer_exploration_server_a121” library by repeating the procedure above and exchange
“acconeer_a121” for “acconeer_exploration_server_a121”. This library also needs to be added before the
“acconeer_a121”-library.

4.2 Project Settings

Set the project to gnu99-compiler by going into “Project → Properties → C/C++ Build → Settings → Tool Settings →
MCU GCC Compiler → General”.

If you want to build the exploration server application you also have to add the linker flag “-u _printf_float” in order for
the exploration server to correctly format floats in the json result.

1. Go to“Project → Properties → C/C++ Build → Settings → Tool Settings → MCU GCC Linker → Miscellaneous
→ Other flags”.

2. Add “-u _printf_float”

4.3 Adding Print Functionality with UART/USART

If an UART/USART has been added when setting up the project in the STM32CubeMX perspective and you want to use
it for prints then you can simply add the following code to your project between the comments “Private user code USER
CODE BEGIN 0” and “USER CODE END 0” in the file “Core/Src/main.c”:

int _write(int file , char *ptr , int len)

{

(void)file;

HAL_UART_Transmit (&huart2 , (uint8_t *)ptr , len , 0xFFFF);

return len;

}

A terminal emulator, for example PuTTY, can be used to view the UART prints from the board.

Download PuTTY from https://putty.org and install it on your computer.

4.3.1 Find STM32 Board COM port

If using Windows, go to Device Manager to locate the COM port used by your STM32 Board.

© 2025 by Acconeer AB - All rights reserved Page 17 of 29

https://putty.org

A121 STM32CubeIDE

Figure 13: Windows Device Manager

4.3.2 Start and Configure PuTTY

1. Start the PuTTY application

2. Select Session in the Category window.

3. Set the Connection Type to Serial

4. Type the STM32 Board COM port in the Serial line text box.

5. Use the same Speed as used for the UART in the STM32CubeIDE project, default 115200.

6. Select Terminal in the Category window.

7. Tick the Implicit CR in every LF tickbox

8. Clock in Open to start the terminal

© 2025 by Acconeer AB - All rights reserved Page 18 of 29

A121 STM32CubeIDE

Figure 14: PuTTY Session

© 2025 by Acconeer AB - All rights reserved Page 19 of 29

A121 STM32CubeIDE

Figure 15: PuTTY Configuration

© 2025 by Acconeer AB - All rights reserved Page 20 of 29

A121 STM32CubeIDE

5 HAL Integration File

5.1 Selecting the Appropriate HAL-integration File

First off you need to pick what HAL integration file to use. The functions in the HAL integration file act as glue between
the RSS radar stack and the drivers generated by the device configuration tool (STM32CubeMX perspective). Your
hardware setup determines which HAL integration file to select as a starting point.

The files “acc_hal_integration_stm32cube_xe121_<single/multi>_sensor.c“ are HAL integrations prepared by Acconeer
to handle the XE121 EVK board together with an STM32 processor.

The file “acc_hal_integration_stm32cube_xe121_single_sensor.c“ will only handle the onboard sensor on the XE121. The
file “acc_hal_integration_stm32cube_xe121_multi_sensor.c“ will handle the onboard sensor on the XE121 aswell as the
possiblity to use XS121 sensors connected in slot S2, S3, S4, S5..

5.2 A121_SPI_HANDLE

Define "A121_SPI_HANDLE" as hspi1 between the comments “USER CODE BEGIN Private defines” and “USER
CODE END Private defines” in the file “Core/Inc/main.h”.

/* USER CODE BEGIN Private defines */

#define A121_SPI_HANDLE hspi1

/* USER CODE END Private defines */

© 2025 by Acconeer AB - All rights reserved Page 21 of 29

A121 STM32CubeIDE

6 Running a Radar Sensor Example

As a first radar example program to run, we selected the program "example_service.c".

To run the radar example program that we have chosen, simply include the header file “example_service.h” in the user
code includes field in your "main.c"-file in the following manner:

/* USER CODE BEGIN Includes */

#include "example_service.h"

/* USER CODE END Includes */

After including the header-file, you can call the function from the "main.c"-file in the user code 2 field by the following
call:

/* USER CODE BEGIN 2 */

acc_example_service (0, NULL);

/* USER CODE END 2 */

6.0.1 Running the Program

Build the software by pressing “Ctrl-B” and then start debugging by right-clicking on the project “AcconeerCubeProject
→ Debug As → STM32 Cortex-M C/C++ Application”. This will open the “Debug Configurations” dialog and there
you can choose which debugger to use, “Debugger → Debug Probe”, and select “ST-LINK”. Click “Debug”, this will
automatically flash the board and execute the program until the “main()” function.

© 2025 by Acconeer AB - All rights reserved Page 22 of 29

A121 STM32CubeIDE

7 Running the Exploration Server

To be able to run the Exploration Server application on your STM32 Board you need to assign a UART with Flow Control.
For Nucleo-L476RG we will use USART3.

7.1 STM32CubeMX

Figure 16: Enable USART3

You also need to use DMA for both RX and TX as well as enable global interrupts for USART3:

Figure 17: Enable DMA for USART3

© 2025 by Acconeer AB - All rights reserved Page 23 of 29

A121 STM32CubeIDE

Figure 18: Enable Global Interrupts for USART3

You need to generate the code again after doing these changes.

7.2 STM32CubeIDE

Define "EXPLORATION_SERVER_UART_HANDLE" as huart3 between the comments “USER CODE BEGIN Private
defines” and “USER CODE END Private defines” in the file “Core/Inc/main.h”.

/* USER CODE BEGIN Private defines */

#define EXPLORATION_SERVER_UART_HANDLE huart3

/* USER CODE END Private defines */

Change the UART RX Pin and Port in acc_exploration_server.c to use USART3:

int acc_exploration_server_stm32(int argc , char *argv [])

{

(void)argc;

(void)argv;

printf("Acconeer Exploration Server\n");

// Wait for host line break to end before starting exploration

server

while (HAL_GPIO_ReadPin(GPIOC , GPIO_PIN_5) == GPIO_PIN_RESET)

{

printf("Waiting for host line break to end ...\n");

HAL_Delay (10);

}

...

}

To run the Exploration Server application, simply declare the main function in the user code includes field in your
"main.c"-file in the following manner:

/* USER CODE BEGIN Includes */

extern int acc_exploration_server_stm32(int argc , char *argv []);

/* USER CODE END Includes */

After declaring the main function, you can call the function from the "main.c"-file in the user code 2 field by the following
call:

/* USER CODE BEGIN 2 */

acc_exploration_server_stm32 (0, NULL);

/* USER CODE END 2 */

© 2025 by Acconeer AB - All rights reserved Page 24 of 29

A121 STM32CubeIDE

7.2.1 Running the Program

Build the software by pressing “Ctrl-B” and then start debugging by right-clicking on the project “AcconeerCubeProject
→ Debug As → STM32 Cortex-M C/C++ Application”. This will open the “Debug Configurations” dialog and there
you can choose which debugger to use, “Debugger → Debug Probe”, and select “ST-LINK”. Click “Debug”, this will
automatically flash the board and execute the program until the “main()” function.

You can access the USART3 signals on the connector CN10 of the Nucleo-L476RG board for connecting the board to a
host.

© 2025 by Acconeer AB - All rights reserved Page 25 of 29

A121 STM32CubeIDE

8 Troubleshooting and FAQ

8.1 Example Fails

The example program can fail for different reasons, here are a few common reasons.

8.1.1 Sensor Creation Returns NULL

The function acc_sensor_create returns NULL. This is most likely because the pins have either been connected wrong or
some other pin fault. Usually due to an SPI communication problem. Could be due to incorrectly connected pins, drivers
are incorrect, or the signals sent to the radar are in the wrong order. See section 8.3 Troubleshooting SPI Communication
for more information.

8.1.2 Config Creation Hardfaults

The function acc_config_create hardfaults. Most likely due to memory problems. Depending on the memory of the MCU,
heap and stack might overwrite each other. Or there is simply not enough memory.

Are you using FREERTOS? Make sure that the thread that is handling the Acconeer software has enough stack size to be
able to run the software.

8.2 The Program is Stuck in HAL_Delay

If the program keeps entering HAL_Delay() or seems to be “stuck” there for longer periods of time, it might be because
the interrupt pin is not connected or malfunctioning.

8.3 Troubleshooting SPI Communication

The following function can be used to find problems in the SPI communication with the radar sensor.

#include "acc_hal_integration_a121.h"

bool hal_test_spi_read_chipid(void)

{

const uint32_t sensor = 1;

const acc_hal_a121_t *hal = acc_hal_rss_integration_get_implementation ();

uint8_t buffer [6] = {0x30 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 };

acc_hal_integration_sensor_supply_on(sensor);

acc_hal_integration_sensor_enable(sensor);

hal ->transfer(sensor , buffer , sizeof(buffer));

acc_hal_integration_sensor_disable(sensor);

acc_hal_integration_sensor_supply_off(sensor);

if (buffer [4] == 0x12 && buffer [5] == 0x10)

{

printf("Test OK !\n");

return true;

}

printf("Cannot read chip id !\n");

return false;

}

When the program is executed, the signals to the A121 should look as in figure 19.

© 2025 by Acconeer AB - All rights reserved Page 26 of 29

A121 STM32CubeIDE

Figure 19: SPI transfer example

Note that the A121 enable signal must be set high at least 2 ms before the SPI transfer.

Figure 20: A121 Enable Signal

8.4 UART Problems

In order to verify the prints over UART we use picocom in Ubuntu:

$ picocom --imap lfcrlf --baud 115200 /dev/ttyACM0

We also had to make sure, in main.c, that the baudrate and word length is correct:

huart2.Init.BaudRate = 115200;

huart2.Init.WordLength = UART_WORDLENGTH_8B;

The linker might tell you that you have multiple definitions of the function "_write". If it happens, remove the
implementation in “syscalls.c” and compile/link again.

8.5 Link Errors

Some users have experienced that STM32CubeIDE forgets the link order of the libraries. Please check that the RSS
libraries are listed in order stated in section 4.1.3 Libraries.

8.6 Heap Memory Corruption

When asking for more heap, the sbrk function will increase the heap towards the stack. However, it is imperative that
the heap and stack never meet or overwrite each other. Unfortunately, the automatically generated code is using the stack
pointer as border between them when it should use the maximum needed stack. This means that the heap might use some
memory which is later overwritten when the stack is growing.

In the file "Src/sysmem.c" remove the line:

register char * stack_ptr asm("sp");

After removing the above line, change the function called "_sbrk" so that it looks like this:

caddr_t _sbrk(int incr)

{

extern char end asm("end");

extern char estack asm("_estack");

extern char min_stack_size asm("_Min_Stack_Size");

© 2025 by Acconeer AB - All rights reserved Page 27 of 29

A121 STM32CubeIDE

char *stack_limit = (char*)(& estack - &min_stack_size);

static char *heap_end;

char *prev_heap_end;

if (heap_end == 0)

heap_end = &end;

prev_heap_end = heap_end;

if (heap_end + incr > stack_limit)

{

errno = ENOMEM;

return (caddr_t) -1;

}

heap_end += incr;

return (caddr_t) prev_heap_end;

}

© 2025 by Acconeer AB - All rights reserved Page 28 of 29

A121 STM32CubeIDE

9 Disclaimer

The information herein is believed to be correct as of the date issued. Acconeer AB (“Acconeer”) will not be responsible
for damages of any nature resulting from the use or reliance upon the information contained herein. Acconeer makes no
warranties, expressed or implied, of merchantability or fitness for a particular purpose or course of performance or usage
of trade. Therefore, it is the user’s responsibility to thoroughly test the product in their particular application to
determine its performance, efficacy and safety. Users should obtain the latest relevant information before placing orders.

Unless Acconeer has explicitly designated an individual Acconeer product as meeting the requirement of a particular
industry standard, Acconeer is not responsible for any failure to meet such industry standard requirements.

Unless explicitly stated herein this document Acconeer has not performed any regulatory conformity test. It is the user’s
responsibility to assure that necessary regulatory conditions are met and approvals have been obtained when using the
product. Regardless of whether the product has passed any conformity test, this document does not constitute any
regulatory approval of the user’s product or application using Acconeer’s product.

Nothing contained herein is to be considered as permission or a recommendation to infringe any patent or any other
intellectual property right. No license, express or implied, to any intellectual property right is granted by Acconeer
herein.

Acconeer reserves the right to at any time correct, change, amend, enhance, modify, and improve this document and/or
Acconeer products without notice.

This document supersedes and replaces all information supplied prior to the publication hereof.

© 2025 by Acconeer AB - All rights reserved Page 29 of 29

	Acconeer SDK Documentation Overview
	Introduction
	Getting Started with STM32CubeIDE
	MCU/Board Selection
	Project Setup
	Pin Configuration
	Pin Configuration with XE121

	Interrupt Configuration
	GPIO Configuration
	XE121 Sensor Selection
	XE121 Single Sensor Setup
	SPI Configuration
	Code Generation

	Configuring Project for Acconeer Software
	Adding Acconeer Software
	Source-files
	Header-files
	Libraries

	Project Settings
	Adding Print Functionality with UART/USART
	Find STM32 Board COM port
	Start and Configure PuTTY

	HAL Integration File
	Selecting the Appropriate HAL-integration File
	A121_SPI_HANDLE

	Running a Radar Sensor Example
	Running the Program

	Running the Exploration Server
	STM32CubeMX
	STM32CubeIDE
	Running the Program

	Troubleshooting and FAQ
	Example Fails
	Sensor Creation Returns NULL
	Config Creation Hardfaults

	The Program is Stuck in HAL_Delay
	Troubleshooting SPI Communication
	UART Problems
	Link Errors
	Heap Memory Corruption

	Disclaimer

