a((oneer

A121 SW Integration

User Guide

((O
A121 SW Integration

A121 SW Integration
User Guide

Author: Acconeer AB
Version:al21-v1.12.0

Acconeer AB October 15, 2025

© 2025 by Acconeer AB - All rights reserved Page 1 of 15

A121 SW Integration

Contents
1 Acconeer SDK Documentation Overview 3
2 Introduction 5
3 Acconeer EVK and Modules 5
4 Acconeer Software Delivery 5
5 HW Integration Overview 5
5.1 GPIOControl Signals 6
52 SPIBUS o 6
5.3 Power Control L e e e e e 6
54 Crystal o 6
6 Prototype Integrations 6
7 Software Integration 7
7.1 HALSIUCE o e e e e e e e e e e e 8
7.1.1 The max_spi_transfer_size Property 8
7.1.2 Mem-alloc Function e e e e 8
7.1.3 Mem-free Function e e e e 8
7.1.4 Sensor Transfer Function e 8
7.1.5 LogFunction e 9
7.1.6 16-bit Sensor Transfer Function 9
7.2 HAL Integration Functions e e e 10
7.2.1 Sensor Supply On Function 10
7.2.2 Sensor Supply Off Function 10
7.2.3 Sensor Enable Function 10
7.2.4 Sensor Disable Function 11
7.2.5 Wait for Interrupt Function 11
7.2.6 Sensor Count Function 11
7.3 System Integration Functions 12
7.3.1 Timekeeping e e e e 12
7.3.2 Memory Handling e 12
7.3.3 LowPower Functionality 13
T4 Hibernate o L e e e e e e e e e 13
8 References, List of Documentation 13
9 Disclaimer 15

© 2025 by Acconeer AB - All rights reserved Page 2 of 15

A121 SW Integration

1 Acconeer SDK Documentation Overview

To better understand what SDK document to use, a summary of the documents are shown in the table below.

Table 1: SDK document overview.

Name | Description | When to use
RSS API documentation (html)
rss_api The complete C API documentation. - RSS application implementation

- Understanding RSS API functions

User guides (PDF)

A121 Assembly Test

Describes the Acconeer assembly
test functionality.

- Bring-up of HW/SW
- Production test implementation

A121 Breathing
Reference Application

Describes the functionality of the
Breathing Reference Application.

- Working with the Breathing
Reference Application

A121 Distance Detector

Describes usage and algorithms
of the Distance Detector.

- Working with the Distance Detector

A121 SW Integration

Describes how to implement each
integration function needed to use
the Acconeer sensor.

- SW implementation of
custom HW integration

A121 Presence Detector

Describes usage and algorithms
of the Presence Detector.

- Working with the Presence Detector

A121 Smart Presence
Reference Application

Describes the functionality of the
Smart Presence Reference Application.

- Working with the Smart Presence
Reference Application

A121 Sparse 1Q Service

Describes usage of the Sparse 1Q
Service.

- Working with the Sparse I1Q Service

A121 Tank Level
Reference Application

Describes the functionality of the
Tank Level Reference Application.

- Working with the Tank Level
Reference Application

A121 Touchless Button
Reference Application

Describes the functionality of the

Touchless Button Reference Application.

- Working with the Touchless Button
Reference Application

A121 Parking
Reference Application

Describes the functionality of the
Parking Reference Application.

- Working with the Parking
Reference Application

Describes the flow of taking an

A121 STM32CubelDE Acconeer SDK and integrate into - Using STM32CubelDE
STM32CubelDE.
. Describes how to develop for . . .
A121 Raspberry Pi Software Raspberry Pi. - Working with Raspberry Pi
. Describes how to develop for - Working with Ripple
A121 Ripple Ripple. on Raspberry Pi

A121 ESP32 User Guide

Describes how to develop with
A121 and ESP32 targets.

- Working with ESP32 targets

Describes how to develop for

XM125 Software XM125. - Working with XM 125
XM126 Software Describes how to develop for - Working with XM126
XM126.
. Describes the functionality of the - Working with the
12€ Distance Detector I2C Distance Detector Application. I2C Distance Detector Application
2C Presence Detector Describes the functionality of the - Working with the
12C Presence Detector Application. 12C Presence Detector Application
. . Describes the functionality of the - Working with the
12C Breathing Reference Application 12C Breathing Reference Application. 12C Breathing Reference Application
Describes the functionality of the - Working with the

12C Cargo Example Application

12C Cargo Example Application.

12C Cargo Example Application

A121 Radar Data and Control (PDF)

A121 Radar Data and Control

Describes different aspects of the
Acconeer offer, for example radar
principles and how to configure

- To understand the Acconeer sensor
- Use case evaluation

Readme (txt)

README

Various target specific information
and links

- After SDK download

© 2025 by Acconeer AB - All rights reserved

Page 3 of 15

((()
A121 SW Integration

© 2025 by Acconeer AB - All rights reserved Page 4 of 15

A121 SW Integration

2 Introduction

This document aims to provide help and support for customers that wish to integrate A121 towards an MCU or processor
that is not included in Acconeer’s module offering. This document covers the software needed to integrate Acconeer’s
libraries with MCU specific drivers. Hardware integration is covered in the document ‘“Hardware and physical integration
guideline” that is available for download at the developer site.

The A121 pulse coherent radar sensor is dependent on a software stack running on a host MCU. The host software
handles low-level configuration of the radar sensor and pre-processing of radar data. All low-level sensor configurations
are uploaded to the sensor at startup, meaning that no firmware or configuration parameters are stored in the sensor
permanently.

Acconeer have selected a few MCUs to verify our software against for each release. Some of them have also been included
in different versions of our EVKSs or modules.

3 Acconeer EVK and Modules

Acconeer has designed EVKs and Modules based on the following MCU/Processors. All of which can be bought on
Digi-Key.

* XC120 + XE121 A121 EVK

» Raspberry Pi 4: Our standard EVK (XE121), running Raspberry Pi OS.

e STM32L431CB: An ARM Cortex M4 MCU that is featured in our XM 125 Entry+ module.

Documentation, including schematics and BOM, for above HW is available from developer site.

4 Acconeer Software Delivery

Acconeer provides software deliveries to the EVKs and Modules on our developer site. It contains example programs and
fully implemented HAL for respective hardware for an easy start of development.

Acconeer also provides an SDK for ARM Cortex M0, M4 and M7 based MCUs. The SDK contains the libraries for
respective MCU and example programs to show how to use the different services in Radar System Software (RSS).
Acconeer also provides a reference implementation of the Hardware Abstraction Layer (HAL) for MCUs from ST
Microelectronics and this implementation can be used for a quick start with STM32CubelDE.

Instructions on how to integrate STM32 MCUs from ST Microelectronics and set up a project in STM32CubelDE can be
found on the developer site. For other MCUs a Hardware Abstraction Layer (HAL) integration must be written according
to the guidelines in this document.

5 HW Integration Overview

Hardware integration is covered in the document ‘“Hardware and physical integration guideline” that is available for
download at the developer site. The purpose of this section is only to define the pin names and connections necessary for
the software integration.

© 2025 by Acconeer AB - All rights reserved Page 5 of 15

http://developer.acconeer.com
http://www.digikey.com
http://developer.acconeer.com
http://developer.acconeer.com
http://developer.acconeer.com
http://developer.acconeer.com

A121 SW Integration

XTAL
A121 ENABLE
< A121 INTERRUPT
A121 SPI SS
A121 SPI CLK
MCU > A121
A121 SPI MOSI
A121 SPI MISO
SENSOR PMU ENABLE Voltage
Regulator

Figure 1: Pin names and connections between A121 and MCU

5.1 GPIO Control Signals

The Acconeer Sensor SW package uses two GPIO control signals: A121_ENABLE and A121_INTERRUPT.
A121_ENABLE signal is used to turn the A121 sensor on and off. The A121_ENABLE signal is active high. The
A121_INTERRUPT signal is used to signal the host MCU that the internal buffer memory contains new measurement
data ready to be transferred via the SPI interface. The A121_INTERRUPT signal is active high.

5.2 SPIBus

The A121 communicates with the host MCU via a 4-line SPI interface. The maximum supported SPI clock frequency is 50
MHz. The A121 is an SPI slave device. The SPI signals are named A121_SPI_CLK, A121_SPI_MOSI, A121_SPI_MISO,
and A121_SPI_SS_N. Note that the slave select signal, A121_SPI_SS_N, is active low and often controlled by a GPIO on
the MCU.

5.3 Power Control

Some hardware designs include a Power Management Unit (PMU) or a power switch that allows the MCU to completely
shut off the power to the A121 sensor.

5.4 Crystal

The A121 radar sensor needs a crystal or an external clock source for the 24 MHz clock reference.

6 Prototype Integrations

For prototype integrations with an MCU development board we recommend using the XE121. It is a breakout board with

an A121 radar sensor, crystal and pin-headers that matches the layout of Nucleo-64, Nucleo-144, Arduino and Raspberry
Pi.

© 2025 by Acconeer AB - All rights reserved Page 6 of 15

A121 SW Integration

7 Software Integration

The Acconeer software delivery consists of an SDK with pre-compiled RSS libraries, headers and example programs to
show how to use the different services and detectors.

Host
Application
A A i
3 RSS Detector !
| v I
3 Service !
\ 4 i
Integration

v

A121

D Customer domain D Acconeer domain

Figure 2: Overview of Radar System Software

Radar System Software (RSS) is the software that will help you interact with the A121 radar sensor. To properly function,
this software utilizes MCU specific functions to handle memory and communication with the sensor. Each integration
of the sensor to a hardware requires a specific pin configuration and different drivers from the MCU. This is solved by a
user-written Hardware Abstraction Layer (HAL). The HAL is a glue layer between RSS and the MCU drivers.

Before the RSS can be used a HAL must be registered. The HAL struct is passed as an argument to the function
acc_rss_hal_register(). The HAL struct contains properties and function pointers that RSS use in its communication with
the hardware. The HAL struct and the function pointer types are declared in the header file
acc_hal_definitions_al21.h.

Acconeer provide fully verified implementations of a HAL for our EVKs and Modules in the respective software
deliveries. Reference implementations are also provided for STM32 MCUs in the Cortex M0, Cortex M4 and Cortex M7
packages, see for example the file acc_hal_integration_stm32cube_xe121_single_sensor.c

© 2025 by Acconeer AB - All rights reserved Page 7 of 15

A121 SW Integration

7.1 HAL Struct

Host
Application
A i A
()
RSS
g J
\ 4 i A 4
(2\
HAL Integration HAL Struct System Integration
\ J

v v

A121

Figure 3: HAL Struct Integration

The following sub-chapters describe how to set the properties and write the functions that are included in the HAL
struct.

The HAL Struct is defined in acc_hal_definitions_al21.h and it is typically declared by and returned from the function
acc_hal _rss_integration_get_implementation in the file acc_hal_integration_.c, for example
acc_hal_integration_stm32cube_xel21 _single_sensor.c.

The functions in the HAL struct are the only external functions outside the C standard library that are called by
RSS.

7.1.1 The max_spi_transfer_size Property

The max_spi_transfer_size should be set to the maximum buffer size that can be transferred over the SPI bus. If there is no
restriction, the limit should be set to SIZE_MAX.

7.1.2 Meme-alloc Function

Return pointer to memory, NULL is seen as failure. Allocated memory should be naturally aligned.

7.1.3 Mem-free Function

Free memory which is previously allocated.

7.1.4 Sensor Transfer Function

The sensor transfer function is called by RSS to transfer data to and from the radar sensor over the SPI bus. The maximum
buffer size can be limited by setting the property max_spi_transfer_size in the HAL struct. The buffer size is always a
multiple of two and the buffer is guaranteed to be 16 bit aligned even though the transfer function is defined with an
8-bit array. It is beneficial from performance perspective to utilize DMA if available and as big buffer transfer size as
possible.

The function should do the following:

© 2025 by Acconeer AB - All rights reserved Page 8 of 15

A121 SW Integration

e Set A121_SPI_SS_N Low
¢ Send and receive SPI buffer
e Set A121_SPI_SS_N High

7.1.5 Log Function

The purpose of the log function is to format log messages and to print them to e.g. the console or debug UART.
The function below shows an example of how the log formatting can be implemented:

#define LOG_BUFFER_MAX_SIZE 150

#define LOG_FORMAT "%02u:%02u:%02u.%03u (%c) (%s): %s\n"

void acc_hal_integration_log(acc_log_level_t level, const char *module,

const char *format, ...)
{
char log_buffer [LOG_BUFFER_MAX_SIZE];
va_list ap;
va_start (ap, format);
int ret = vsnprintf (log_buffer, LOG_BUFFER_MAX_SIZE, format, ap);
if (ret >= LOG_BUFFER_MAX_SIZE)
{
log_buffer [LOG_BUFFER_MAX_SIZE - 4] = ’.°;
log_buffer [LOG_BUFFER_MAX_SIZE - 3] = ’.°;
log_buffer [LOG_BUFFER_MAX_SIZE - 2] = °’.’;
log_buffer [LOG_BUFFER_MAX_SIZE - 1] = 0;
}
uint32_t time_ms = acc_hal_integration_get_current_time () ;
char level_ch;
unsigned int timestamp = time_ms;
unsigned int hours = timestamp / 1000 / 60 / 60;
unsigned int minutes = timestamp / 1000 / 60 % 60;
unsigned int seconds = timestamp / 1000 % 60;
unsigned int milliseconds = timestamp % 1000;
level_ch = (level <= ACC_LOG_LEVEL_DEBUG) ? "EWIVD"[level] : ’7°;
printf (LOG_FORMAT, hours, minutes, seconds, milliseconds, level_ch,
module, log_buffer);
va_end (ap) ;
}

7.1.6 16-bit Sensor Transfer Function

The 16-bit sensor transfer function is optional and can be implemented on supported integrations to optimize the SPI data
transfer time. It will do the same as the normal transfer function except that it will transfer data over SPI to the sensor in
16 bit chunks.

© 2025 by Acconeer AB - All rights reserved Page 9 of 15

A121 SW Integration

7.2 HAL Integration Functions

Host
Application
A i A
()
RSS
g J
h 4 i \ 4
4 3\
HAL Integration HAL Struct System Integration
\ J

v v

A121

Figure 4: HAL Integration

The HAL Integration is used to define a common API for sensor control from the example and reference applications and
it contains functionality for sensor control, such as power on/off and enable/disable. These functions are not used by the
RSS library. It is the responsibility of the application to handle power supply, control the A121_ENABLE pin, and wait
for interrupt signals. The HAL Integration functions described in this section are intended to help applications to perform
this functionality.

The HAL Integration functions are defined in acc-hal_integration_al2l.h and they are typically declared and
implemented in the file acc_hal_integration_.c, for example
acc_hal_integration_stm32cube xel21 single_sensor.c.

The following sub-chapters describe how to write the integration functions that are used by example code to control the
Sensor.
7.2.1 Sensor Supply On Function

The supply on function is called to enable the supply to the sensor. On some boards, like the XE121, the sensor is always
powered. In that case this function is empty.

When the sensor is powered the MCU is allowed to drive the GPIO signals towards the A121 sensor high, for example
the A121_SPI_SS_N.
7.2.2 Sensor Supply Off Function

The supply off function is called to disable the supply to the sensor. On some boards, like the XE121, the sensor is always
powered. In that case this function is empty.

All GPIO signals from the MCU to the sensor that is driven by the MCU, for example the A121_SPI_SS_N, must be set
LOW before disabling power to the sensor.

7.2.3 Sensor Enable Function
The sensor enable function is called to enable the sensor.

The function should do the following:

© 2025 by Acconeer AB - All rights reserved Page 10 of 15

A121 SW Integration

* Prerequisite: The sensor is powered on and A121_SPI_SS_N is set to high
* Set the A121_ENABLE signal High.
* Wait for sensor crystal to stabilize. This time depends on the used integration and crystal, see “A121 Datasheet” for
more information.
7.2.4 Sensor Disable Function
The sensor disable function is called to disable the sensor.
The function should do the following:
» Set the A121_ENABLE signal Low.
e Wait 2 ms

7.2.5 Wait for Interrupt Function

This function shall wait at most timeout_ms for the A121_INTERRUPT pin to become active and then return true. If the
A121_INTERRUPT pin is not high after timeout_ms the function shall return false.

A simple and portable way of implementing the wait for interrupt function is to use polling. The function should then
repeatedly do the following until the interrupt pin is high or a timeout has occurred:

¢ Check the A121_INTERRUPT pin and return true if interrupt pin is HIGH

* Sleep a short time

¢ Return false if timeout

* Start over and check the interrupt pin again.
While polling is great for maximum portability an optimized implementation may take advantage of HW interrupt support
in the MCU to reduce latency and power consumption.
7.2.6 Sensor Count Function

This function should return the number of sensors connected in the system.

© 2025 by Acconeer AB - All rights reserved Page 11 of 15

A121 SW Integration

7.3 System Integration Functions

Host
Application
A 1 A
()
RSS
g J
\ 4 1 \ 4
4 3\
HAL Integration HAL Struct System Integration
\ J

v v

A121

Figure 5: System Integration

The System Integration contains functionality for timekeeping and memory allocations. It is used to make the reference
applications and example applications portable between different hardware platforms.

The System Integration functions are defined in acc_integration.h and they are typically declared and implemented in
the file acc_integration_.c, for example acc_integration_stm32.c.

7.3.1 Timekeeping

These functions are used for timekeeping in the host system.

Get Current Time in Milliseconds

uint32_t acc_integration_get_time (void)

Millisecond Sleep

void acc_integration_sleep_ms(uint32_t time_msec)

Microsecond Sleep

void acc_integration_sleep_us(uint32_t time_usec)

7.3.2 Memory Handling
These functions are used to allocate and free memory.
Allocate Memory

void *acc_integration_mem_alloc(size_t size)

Allocate and Clear Memory

void *acc_integration_mem_calloc(size_t nmemb, size_t size)

Free Memory

© 2025 by Acconeer AB - All rights reserved Page 12 of 15

A121 SW Integration

void acc_integration_mem_free(void* ptr)

7.3.3 Low Power Functionality

These functions are used by the low power examples. The acc_integration_set_periodic_wakeup function will setup the
wakeup interval and the acc_integration_sleep_until_periodic_wakeup function will put the host system into its lowest
power state and sleep until the periodic wakeup time is due.

Note that these functions are only available for targets that include the low power example and reference applications,
such as the XM 125 module.

Set Periodic Wakeup

void acc_integration_set_periodic_wakeup(uint32_t time_msec)

Sleep Until Periodic Wakeup

void acc_integration_sleep_until_periodic_wakeup (void)

7.4 Hibernate

The sensor supports hibernation where the program memory in the sensor is retained when the sensor is disabled. This will
allow very low power consumption without the penalty of having to completely re-initialize the sensor. Re-initialization
of the sensor includes transfer of the whole sensor program from the host to the sensor over SPI.

Hibernate is entered by first calling acc_sensor_hibernate_on() to enable retention of the program memory. Then, the
sensor disable function is called:

bool enter_hibernate (acc_sensor_t *sensor)

{
bool status = true;
if ('acc_sensor_hibernate_on (sensor))
{
printf ("acc_sensor_hibernate_on failed\n");
status = false;
+
acc_hal_integration_sensor_disable (SENSOR_ID) ;
return status;
+

Hibernate is exited by first calling the sensor enable function followed by a call to acc_sensor_hibernate_off() to disable
retention of the program memory:

static bool exit_hibernate(acc_sensor_t *sensor)

{
bool status = true;
acc_hal_integration_sensor_enable (SENSOR_ID) ;
if (lacc_sensor_hibernate_off (sensor))
{
printf ("acc_sensor_hibernate_off failed\n");
status = false;
}
return status;
+

8 References, List of Documentation

* Hardware and physical integration guideline

¢ STM32CubelDE User Guide

© 2025 by Acconeer AB - All rights reserved Page 13 of 15

<(O
A121 SW Integration

¢ A121 Datasheet

All Documents referred to can be found on the developer site.

© 2025 by Acconeer AB - All rights reserved Page 14 of 15

http://developer.acconeer.com

((O
A121 SW Integration

9 Disclaimer

The information herein is believed to be correct as of the date issued. Acconeer AB (“Acconeer”) will not be responsible
for damages of any nature resulting from the use or reliance upon the information contained herein. Acconeer makes no
warranties, expressed or implied, of merchantability or fitness for a particular purpose or course of performance or usage
of trade. Therefore, it is the user’s responsibility to thoroughly test the product in their particular application to
determine its performance, efficacy and safety. Users should obtain the latest relevant information before placing orders.

Unless Acconeer has explicitly designated an individual Acconeer product as meeting the requirement of a particular
industry standard, Acconeer is not responsible for any failure to meet such industry standard requirements.

Unless explicitly stated herein this document Acconeer has not performed any regulatory conformity test. It is the user’s
responsibility to assure that necessary regulatory conditions are met and approvals have been obtained when using the
product. Regardless of whether the product has passed any conformity test, this document does not constitute any
regulatory approval of the user’s product or application using Acconeer’s product.

Nothing contained herein is to be considered as permission or a recommendation to infringe any patent or any other
intellectual property right. No license, express or implied, to any intellectual property right is granted by Acconeer

herein.

Acconeer reserves the right to at any time correct, change, amend, enhance, modify, and improve this document and/or
Acconeer products without notice.

This document supersedes and replaces all information supplied prior to the publication hereof.

a((oneer

© 2025 by Acconeer AB - All rights reserved Page 15 of 15

	Acconeer SDK Documentation Overview
	Introduction
	Acconeer EVK and Modules
	Acconeer Software Delivery
	HW Integration Overview
	GPIO Control Signals
	SPI Bus
	Power Control
	Crystal

	Prototype Integrations
	Software Integration
	HAL Struct
	The max_spi_transfer_size Property
	Mem-alloc Function
	Mem-free Function
	Sensor Transfer Function
	Log Function
	16-bit Sensor Transfer Function

	HAL Integration Functions
	Sensor Supply On Function
	Sensor Supply Off Function
	Sensor Enable Function
	Sensor Disable Function
	Wait for Interrupt Function
	Sensor Count Function

	System Integration Functions
	Timekeeping
	Memory Handling
	Low Power Functionality

	Hibernate

	References, List of Documentation
	Disclaimer

