a((oneer

Distance Detector
User Guide

((O
Distance Detector

Distance Detector
User Guide

Author: Acconeer AB
Version:al 11-v2.15.2

Acconeer AB August 18, 2023

© 2023 by Acconeer AB - All rights reserved Page 1 of 11

Distance Detector

Contents

w

1 Distance Detector
1.1 Initializing the System L e e e e
1.2 RSS Configuration e

&~ B

2 Configuring the Distance Detector
2.1 Setting Sweep Parameters L e e e e
2.1.1 Profiles L e
2.1.2 Downsampling Factor
2.1.3 Hardware Accelerated Average Samples (HWAAS)
2.14 PowerSave Mode
2.1.5 Maximum Unambiguous Range (mur)
2.2 Distance Detector parameterso e e e e
221 Sweep Averaging e e e e e e e
2.2.2 Thresholdtype e
223 PeaksOrting e e e e

[~ IES IS BEN e Ne) WNo NNV, BV, BV, BN $) |

3 Measure Distances
3.1 Creating and Activating the Distance Detector,
3.2 Getting Detection Results

O © ©

4 Deactivating and Destroying the Distance Detector 10

5 Updating from Distance Peak Detector 10
5.1 Configuration e e 10
5.2 Getting Detection Result 10

6 Disclaimer 11

© 2023 by Acconeer AB - All rights reserved Page 2 of 11

((O
Distance Detector

1 Distance Detector

The Distance Detector provides an API to get the distance to one or several objects in front of the sensor. It is implemented
on top of the Envelope service and data from the Envelope service is further processed to find objects in the signal
data.

Application
O

"RSS

' T

Detectors

(Distance peak 1{ Distance basic]
(Distance] (Obstacle] (Presence j

b A

A

Services

=D

SPI

Alll]

The figure below shows envelope data with two objects in front of the sensor. The Distance Detector uses algorithms
to find the peaks of the two objects and returns the distance and the amplitude of the peaks to the client application.
Note that the absolute distance to an object is affected by integration of the sensor behind different material and lenses
and that the amplitude is the peak value from the underlying Envelope data. For more details on the envelope data
it is recommended to use our exploration tool and documentation on GitHub Acconeer Exploration Tool and also the
corresponding documentation on Read-the-Docs.

© 2023 by Acconeer AB - All rights reserved Page 3 of 11

https://github.com/acconeer/acconeer-python-exploration
https://acconeer-python-exploration.readthedocs.io/en/latest/processing/distance_detector.html

Distance Detector

2000

1800

1600

1400

1200

Amplitude
o
[=]
o

800

600

400

m /\-/_j

0.2 0.3 0.4
Depth (m)

Acconeer provides an example of how to use the Distance Detector: example_detector_distance.c

1.1 Initializing the System

The Radar System Software (RSS) must be activated before any other calls are done. The activation requires a pointer
to an acc_hal_t struct which contains information on the hardware integration and function pointers to hardware driver
functions that are needed by RSS. See chapter 4 in the document “HAL Integration User Guide” for more information on
how to integrate the driver layer and populate the hal struct.

In Acconeer’s example integration towards STM32 and the drivers generated by the STM32Cube tool, there is a function
acc_hal_integration_get_implementation to obtain the hal struct.

const acc_hal_t *hal = acc_hal_integration_get_implementation();

if (l'acc_rss_activate (hal))
{
/* Handle error */

}

The corresponding code looks slightly different in software packages for the Raspberry Pi and other software packages
from Acconeer where peripheral drivers for the host are included. The hal struct is then obtained with the function
acc_hal_integration_get_implementation.

const acc_hal_t *hal = acc_hal_integration_get_implementation () ;

if (l'acc_rss_activate (hal))

{
/* Handle error */

}

1.2 RSS Configuration

There is one configuration for RSS that takes effect for all services and detectors. That configuration is ‘Override Sensor
ID Check at Creation’ and makes it possible to create multiple services and/or detectors for the same sensor ID. The
configuration can be set by calling:

acc_rss_override_sensor_id_check_at_creation(true);
A normal situation where this can be of benefit is when an application wants to switch between services and/or detectors

easily and efficiently or when an application wants to switch between configurations of the same service/detector. An
example of how to do this can be found in example_multiple_service_usage.c.

© 2023 by Acconeer AB - All rights reserved Page 4 of 11

Distance Detector

2 Configuring the Distance Detector

A configuration must be created to use the Distance Detector. To create a configuration, call the
acc_detector_distance_configuration_create function which will create a configuration and return it.

acc_detector_distance_configuration_t distance_configuration;
distance_configuration = acc_detector_distance_configuration_create();

A newly created configuration is populated with default parameters and can be used directly to create the detector by
calling the acc_detector_distance_create function. A more common scenario is to first modify some of the configuration
parameters to better fit the application.

2.1 Setting Sweep Parameters

Many of the sweep parameters configurable for the Envelope service are also configurable through the Distance Detector.
Like other configuration parameters, the sweep parameters have reasonable default values, but in most applications it is
necessary to modify at least some of them.

See acc_detector_distance.h for more complete explanation of the configuration parameters.

2.1.1 Profiles

The services and detectors support profiles with different configuration of emission in the sensor. The different profiles
provide an option to configure the pulse length and optimize on either depth resolution or radar loop gain. More
information regarding profiles can be read in the Radar sensor introduction document.

—Long Wavelet
Short Wavelat

Envelope Signal

Ry Ry Distance

The figure above shows the envelope signal of the same objects with two different profiles, one with a short pulse length
and one with a long pulse length.

The Distance Detector supports five different profiles which are defined in acc_definitions_alll.h. Profile 1 has the
shortest pulse length and should be used in applications which aim to see multiple objects or with short distance to the
object. Profiles with higher numbers have longer pulse length and are more suitable to use in applications which aim to
see objects with weak reflection or objects further away from the sensor.

The highest profiles, 4 and 5, will lead to lower precision when estimating the distance.

Profiles can be configured by the application by using a set function in the Distance Detector API. The default profile is
ACC_SERVICE_PROFILE_2.

void acc_detector_distance_configuration_service_profile_set(
acc_detector_distance_configuration_t distance_configuration,
acc_service_profile_t service_profile);

2.1.2 Downsampling Factor

In the Distance Detector, the base step length is "0.5mm. The default configuration enables the sensor to produce data
at every point and will give the highest resolution. Applications that don’t require as high resolution can downsample
the data in the sensor by increasing the step length. For example setting downsampling factor to 4 makes the distance
between two points in the measured range “2mm. Less data require less processing and could be useful in applications
which require low power and memory consumption. Downsampling will also make it possible to set a longer range length.
The Distance Detector supports a downsampling factor of 1, 2, or 4.

© 2023 by Acconeer AB - All rights reserved Page 5 of 11

https://acconeer-python-exploration.readthedocs.io/en/latest/sensor_introduction.html

Distance Detector

void acc_detector_distance_configuration_downsampling_ factor_set (
acc_detector_distance_configuration_t distance_configuration, uintl6_t
downsampling_factor) ;

2.1.3 Hardware Accelerated Average Samples (HWAAS)

The sensor can be configured with the number of samples measured and averaged to obtain a single point in the data.
These samples are averaged directly in the sensor hardware and only one value for each point is transferred over SPI.
Therefore, increasing HWAAS is a both memory and computationally inexpensive way to increase the SNR. The time
needed to measure a sweep is roughly proportional to the number of averaged samples. Hence, if there is a need to obtain
a higher update rate, HWAAS could be decreased but this leads to lower SNR. The HWAAS value must be at least 1 and
not larger than 63, the default value for the Distance Detector is 10.

void acc_detector_distance_configuration_hw_accelerated_average_samples_set (
acc_service_configuration_t configuration, uint8_t samples) ;

2.1.4 Power Save Mode

The power save mode configuration sets what state the sensor waits in between measurements in an active service. There
are five power save modes and the modes differentiate in current dissipation and response latency, where the most current
consuming mode ‘ACTIVE’ gives fastest response and the least current consuming mode ‘OFF’ gives the slowest
response. The absolute response time is determined by several factors besides the power save mode configuration. These
are length and threshold. In addition, the host capabilities in terms of SPI communication speed and processing speed
also impact on the absolute response time. The power consumption of the system depends on the actual configuration of
the application and it is recommended to test both the minimum response time and the power consumption when the
configuration is decided.

Mode ‘HIBERNATE’ is not supported by the Distance Detector.

typedef enum

{
ACC_POWER_SAVE_MODE_OFF ,
ACC_POWER_SAVE_MODE_SLEEP ,
ACC_POWER_SAVE_MODE_READY ,
ACC_POWER_SAVE_MODE_ACTIVE,
ACC_POWER_SAVE_MODE_HIBERNATE,

} acc_power_save_mode_enum_t;

typedef uint32_t acc_power_save_mode_t;

void acc_detector_distance_configuration_power_save_mode_set (
acc_detector_distance_configuration_t distance_configuration,
acc_power_save_mode_t power_save_mode) ;

2.1.5 Maximum Unambiguous Range (mur)
Sets the maximum unambiguous range (MUR), which in turn sets the maximum measurable distance (MMD).

The MMD is the maximum value for the range end, i.e., the range start + length. The MMD is smaller than the MUR due
to hardware limitations.

The MUR is the maximum distance at which an object can be located to guarantee that its reflection corresponds to the
most recent transmitted pulse. Objects farther away than the MUR may fold into the measured range. For example, with
a MUR of 10 m, an object at 12 m could become visible at 2 m.

A higher setting gives a larger MUR/MMD, but comes at a cost of increasing the measurement time for a sweep. The
measurement time is approximately proportional to the MUR.

This setting changes the pulse repetition frequency (PRF) of the radar system. The relation between PRF and MUR is
MUR = ¢/ (2 * PRF) where c is the speed of light.

Setting MUR MMD PRF

ACC_SERVICEIMUR.6 11.5m 7.0m 13.0 MHz
ACC_SERVICEIMUR9 173m 127m 8.7MHz

© 2023 by Acconeer AB - All rights reserved Page 6 of 11

Distance Detector

This is an experimental feature.

void acc_detector_distance_configuration_mur_set (
acc_detector_distance_configuration_t distance_configuration,
acc_service_mur_t

max_unambiguous_range) ;

2.2 Distance Detector parameters

Distance Detector parameters controls the post processing of the data provided by the Envelope service. These settings
will help to improve the service data and control how peaks are found and sorted.

For more information on detector specific parameters see Distance Detector Processing document.

2.2.1 Sweep Averaging

With sweep averaging, multiple envelope sweeps can be averaged in the detector. This will reduce the impact of noise
and enables a more robust detector by lowering the false alarm rate with the same probability of detection. Setting
sweep averaging > 1 will enable sweep averaging and also increase memory consumption. As default sweep averaging is
5.

void acc_detector_distance_configuration_sweep_averaging_set (
acc_detector_distance_configuration_t distance_configuration, uintl6_t
sweep_averaging) ;

2.2.2 Threshold type
The Distance Detector supports three kinds of thresholds. Fixed Threshold is the default threshold type.

Threshold type Purpose Memory usage Complexity
Fixed Threshold Simple Low Low
Recorded Threshold Remove static peaks High Medium
Constant False Alarm Rate (CFAR) Threshold Dynamic Low High

void acc_detector_distance_configuration_threshold_type_set (
acc_detector_distance_configuration_t distance_configuration,
acc_detector_distance_threshold_type_t threshold);

Fixed Threshold Fixed Threshold sets a fixed threshold over the full range. Peaks with an amplitude above the threshold
will be reported to the application

void acc_detector_distance_configuration_fixed_threshold_set (
acc_detector_distance_configuration_t distance_configuration, uintl6_t
threshold) ;

Recorded Threshold Recorded Threshold will record the background and calculate a threshold. This will filter out
any stationary objects in front of the sensor and only report distance to objects not present during the recording of the
background. The Distance Detector has to be provided sufficient memory to store the background data in. The required
length of the background data is provided by the acc_detector_distance_metadata_get function.

bool acc_detector_distance_record_background (acc_detector_distance_handle_t
distance_handle, uintl6_t *background, uintl6_t background_length,
acc_detector_distance_recorded_background_info_t *background_info) ;

If the environment surrounding the sensor significantly changes, then a new background recording should be done. This
is done by calling the acc_detector_distance_record_background function.

A higher number of background sweeps will result in a more stable background, but will take a longer time to
record.

© 2023 by Acconeer AB - All rights reserved Page 7 of 11

https://acconeer-python-exploration.readthedocs.io/en/latest/processing/distance_detector.html

Distance Detector

void acc_detector_distance_configuration_record_background_sweeps_set (
acc_detector_distance_configuration_t distance_configuration, uintl6_t
record_sweeps) ;

The threshold is also configurable by setting the sensitivity, a number between 0 and 1. A higher value will make the
detector more sensitive and increase the detection rate, but will also increase the number of false detects.

void acc_detector_distance_configuration_threshold_sensitivity_set (
acc_detector_distance_configuration_t distance_configuration, float
sensitivity);

The recorded background can be saved and reused by using the acc_detector_distance_set_background function.

bool acc_detector_distance_set_background(acc_detector_distance_handle_t
distance_handle, const uintl6_t *background, uintl6_t background_length);

Constant False Alarm Rate (CFAR) Threshold CFAR Threshold constructs a threshold for a certain distance by using
the envelope signal from neighboring distances in the same sweep. This provides a more dynamic threshold than Fixed
Threshold while keeping memory consumption down.

Distance of interest

SERVICE ENVELOFPE DATA

k|f\|/\|f

Window ‘ Guard Window

The parameters configuring the CFAR Threshold are the guard, the gap around the distance of interest which are not
included in the sweep, and the window, the distance on either side of the guard included in the threshold
calculation.

void acc_detector_distance_configuration_cfar_threshold_guard_set (
acc_detector_distance_configuration_t distance_configuration, float
guard_m) ;

void acc_detector_distance_configuration_cfar_threshold_window_set (
acc_detector_distance_configuration_t distance_configuration, float
window_m) ;

Instead of determining the CFAR Threshold from sweep amplitudes on both sides of the distance of interest, it may be
useful to only use the window closer to the sensor. This is useful in cases when many multipath signals can appear just
after the main peak, e.g. fluid level in small tanks.

void
acc_detector_distance_configuration_cfar_threshold_only_lower_distance_set
(acc_detector_distance_configuration_t distance_configuration, bool
only_lower_distance) ;

The sensitivity of the threshold can be set in the same way as for the Recorded Threshold.

2.2.3 Peak sorting

When detecting multiple peaks, one peak might be more important than the others depending on use-case. The Distance
Detector supports four different peak sorting methods. Strongest First is the default peak sorting.

Closest First This method sorts the peaks by distance, with the closest first.

Strongest First This method sorts the peaks by amplitude, with the strongest first.

© 2023 by Acconeer AB - All rights reserved Page 8 of 11

Distance Detector

Strongest Reflector First Objects at a larger distance will have a lower amplitude. This method takes into account
the radar equation and will sort the peaks by A;*R;?, where A; is the amplitude of the peak and R; is the distance to the
peak.

Strongest Flat Reflector First Large flat reflectors, such as fluid surfaces, will have a different distance dependence in
the radar equation, compared to other reflectors. This method will take into account the radar equation and sort peaks by
A;i*R;, where A; is the amplitude of the peak and R; is the distance to the peak.

3 Measure Distances

3.1 Creating and Activating the Distance Detector

When the configuration has been prepared with the desired configuration parameters, the Distance Detector can be created.
During the creation step all configuration parameters are validated and the resources needed by RSS are reserved. This
means that if the creation step is successful, we can be sure that it is possible to activate the detector and get data from the
sensor (unless there is some unexpected hardware error).

acc_detector_distance_handle_t distance_handle =
acc_detector_distance_create(distance_configuration) ;

When the detector is created, it is possible to fetch metadata from the detector

acc_detector_distance_metadata_t metadata;

acc_detector_distance_metadata_get (distance_handle, &metadata);

float start_m
float length_m
uintl6_t background_length

metadata.start_m;
metadata.length_m;
metadata.background_length;

When the Distance Detector has been created, the memory resources allocated by the configuration can be released by
calling the acc_detector_distance_configuration_destroy function.

To activate the detector call the acc_detector_distance_activate function. Now, the detector and the sensor are ready to
produce data which can be retrieved by calling the acc_detector_distance_get_next function.

if (l'acc_detector_distance_activate(distance_handle)) {
/* Handle error */

3

3.2 Getting Detection Results

After activation it is possible to retrieve the distance results by calling the acc_detector_distance_get_next function.

uintl6_t number_of_peaks = 5;
acc_detector_distance_result_t result [number_of_peaks];
acc_detector_distance_result_info_t result_info;

if (lacc_detector_distance_get_next(distance_handle, result, number_of_peaks
, &result_info))

{
/* Handle error */
+
for (uintl6_t i = 0; i < result_info.number_of_peaks; i++)
{
printf ("Amplitude %u at %u mm\n", (unsigned int)result[i].amplitude,
(unsigned int) (result([i].distance_m * 1000));
}

© 2023 by Acconeer AB - All rights reserved Page 9 of 11

Distance Detector

4 Deactivating and Destroying the Distance Detector

To release the memory resources allocated by the Distance Detector, call the acc_detector_distance_deactivate function
followed by the acc_detector_distance_destroy function. The Distance Detector can be activated again after deactivate, but
it has to be recreated after destroy.

if ('acc_detector_distance_deactivate(distance_handle))
{

/* Handle error */
}

acc_detector_distance_destroy(&distance_handle) ;

5 Updating from Distance Peak Detector

The Distance Detector is replacing the Distance Peak Detector. The API is similar, except for some additional functionality
added to the Distance Detector, and it should be easy to upgrade an application to use the Distance Detector.

5.1 Configuration

The Distance Detector does not expose acc_base_configurationt and is instead configured directly through
acc_detector_distance_configuration_t. Most settings are the same and are configured the same way. The default service
profile is changed from ACC_SERVICE_PROFILE_1 to ACC_SERVICE_PROFILE_2.

Instead of configuring running average factor, the Distance Detector introduces sweep averaging.

Configuring threshold has changed and an additional threshold type is introduced. Fixed threshold type is kept with the
same functionality. Threshold modes estimation and provided is replaced by recorded. Recorded threshold can be used
both to record the background and to provide an already recorded background to the detector. The additional threshold
mode is Constant False Alarm Rate, CFAR (see above for more information on this threshold).

The option to set absolute amplitude is removed and the Distance Detector always returns the absolute amplitude.
Additional peak sorting methods have been introduced and the API has changed. Sort by amplitude corresponds to
ACC_DETECTOR_DISTANCE_PEAK_SORTING_STRONGEST_FIRST and the default peak sorting for the Distance
Peak Detector corresponds to ACC_DETECTOR_DISTANCE_PEAK_SORTING_CLOSEST_FIRST.

5.2 Getting Detection Result

The API for getting the detection result is similar for the Distance Peak Detector and the Distance Detector.

The acc_detector_distance_result_info_t contains more information. The number of peaks returned is moved to the result
info. Also, the Distance Detector returns information about the first sample point above the threshold.

© 2023 by Acconeer AB - All rights reserved Page 10 of 11

<(O
Distance Detector

6 Disclaimer

The information herein is believed to be correct as of the date issued. Acconeer AB (“Acconeer”) will not be responsible
for damages of any nature resulting from the use or reliance upon the information contained herein. Acconeer makes no
warranties, expressed or implied, of merchantability or fitness for a particular purpose or course of performance or usage
of trade. Therefore, it is the user’s responsibility to thoroughly test the product in their particular application to
determine its performance, efficacy and safety. Users should obtain the latest relevant information before placing orders.

Unless Acconeer has explicitly designated an individual Acconeer product as meeting the requirement of a particular
industry standard, Acconeer is not responsible for any failure to meet such industry standard requirements.

Unless explicitly stated herein this document Acconeer has not performed any regulatory conformity test. It is the user’s
responsibility to assure that necessary regulatory conditions are met and approvals have been obtained when using the
product. Regardless of whether the product has passed any conformity test, this document does not constitute any
regulatory approval of the user’s product or application using Acconeer’s product.

Nothing contained herein is to be considered as permission or a recommendation to infringe any patent or any other
intellectual property right. No license, express or implied, to any intellectual property right is granted by Acconeer

herein.

Acconeer reserves the right to at any time correct, change, amend, enhance, modify, and improve this document and/or
Acconeer products without notice.

This document supersedes and replaces all information supplied prior to the publication hereof.

a((oneer

© 2023 by Acconeer AB - All rights reserved Page 11 of 11

	Distance Detector
	Initializing the System
	RSS Configuration

	Configuring the Distance Detector
	Setting Sweep Parameters
	Profiles
	Downsampling Factor
	Hardware Accelerated Average Samples (HWAAS)
	Power Save Mode
	Maximum Unambiguous Range (mur)

	Distance Detector parameters
	Sweep Averaging
	Threshold type
	Peak sorting

	Measure Distances
	Creating and Activating the Distance Detector
	Getting Detection Results

	Deactivating and Destroying the Distance Detector
	Updating from Distance Peak Detector
	Configuration
	Getting Detection Result

	Disclaimer

