

XM122 Module Software

User Guide

XM122 Module Software

User Guide

Author: Acconeer AB

Version:a111-v2.12.0

Acconeer AB June 20, 2022

Contents

1	Introdu	ıctio		3
2		_	oftware Image	4
			DFU	4
			DFU	5
			ing J-Link	5
	2.4 Re	estore	Bootloader	6
3	Power			7
	3.1 M	ODU	LE_POWER_MODE	7
			R_POWER_MODE	7
			E_RATE	7
	3.4 RI	EPET	TION_MODE	7
4	Startup	o Tim	ing	8
5	Physic	al Ini	erfaces	ç
•			rotocol	9
		-	UART settings	ç
			Byte Order	g
			Payload length	g
			Register Read Request	ģ
			Register Read Response	ģ
			Register Write Request	ģ
				10
				10
				10
	5.			10
			• •	11
			=	11
			· · · · · · · · · · · · · · · · · · ·	11
	5.1	1.14	Buffer Streaming Payload	11
	_		· ·	12
			0	12
	5.2			12
	5.2	2.3	² C Buffer Read Request	12
	5.2			13
	5.2	2.5	¹² C Register Write Request Example	13
6	Registe	er Ma	p	14
	6.1 Ge	eneral	Registers	14
	6.2 Po	wer I	in Registers	17
	6.3 Er	ivelop	e Registers	19
	6.4 IQ	Regi	sters	21
	6.5 Sp	arse]	Registers	23
	6.6 Di	istanc	Register	25
	6.7 Ot	bstacl	Register	27
	6.8 Pr	esenc	e Registers	29
7	Examp	les		31
				31
	-			31
				32
_				
ŏ	Disclai	mer		33

1 Introduction

The module software enable register-based access to radar functionality from external devices connected to a module. The module software is delivered as an image.

Typical usages of the module software are:

- Integration of radar functionality in your product to decrease development cost and time to market.
- Module evaluation and algorithm development in Python together with the "Acconeer Python Exploration Tool" that is available for download on GitHub https://github.com/acconeer/.

The module software provides a rich register-based API that can be accessed over UART, SPI and I²C depending on module. The module software currently support the following services and detectors:

- Power Bins Service
- Envelope Service
- IQ Service
- · Sparse Service
- Distance peak distance with fixed threshold
- · Distance detector
- · Obstacle detector
- · Presence detector

Note that the performance and max range of the different detectors and services depends on the module that is being used as well as the configured settings like update rate and downsampling factor. Depending on use case the performance might not be good enough when using a low power module.

Support for more detectors is planned for future module software releases. A software image comprising the module software is available for download from Acconeer's website. See "Installing Software Image" at page 4 for instruction on how to install the module software. For an introduction to Acconeer's technology and product offer refer to "Introduction to Acconeer's sensor technology", available at the Acconeer website.

2 Installing Software Image

The XM122 comes with a preinstalled bootloader supporting the Device Firmware Upgrade (DFU) protocol, which allows the customer to program ("flash") the XM122 with application software using only a USB cable connected to the XB122 board.

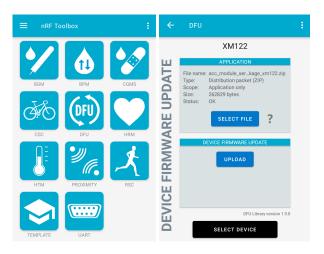
Another option is to flash the device over-the-air using its Bluetooth Low Energy (BLE) capabilities. This requires the aid of Nordic Semiconductor's nRF Toolbox or nRF Connect app for Android or iPhone (freely available on Google Play and Apple's App Store, respectively).

The third option is to program the device using a SWD debugger, this requires additional hardware which is suitable when developing your own applications.

A device without application software will enter DFU mode automatically during boot. It will continue to do so until the device has been flashed. After that, the device can be made to enter DFU mode again by holding down the DFU button on XB122 while pressing the Reset button.

2.1 Android DFU

In order to install or update the software on the XM122 module we recommend using the 'nRF Toolbox' application for Android which is available on Google Play Store.


- 1. Connect the XB122 together with XM122 to your PC with a micro USB cable to the USB connector
- 2. Press and hold the "DFU" button on the board
- 3. Press the "RESET" button (still holding the "DFU" button)
- 4. Release the "RESET" button
- 5. Release the "DFU" button

Your XM122 device is now in 'DFU' mode waiting for a software uprade procedure to be started.

- 1. Start the 'nRF Toolbox' application on your phone
- 2. Transfer the zip-file, e.g. 'acc_module_server_dfu_package_xm122.zip' to your phone.
- 3. Press 'DFU'
- 4. Press 'SELECT FILE'
- 5. Make sure 'Distribution packet (ZIP)' is selected and press 'OK'
- 6. Select the zip file, e.g. 'acc_module_server_dfu_package_xm122.zip'
- 7. Make sure 'Application only' scope is selected and press 'OK'
- 8. Press 'SELECT DEVICE' and select XM122
- 9. Press 'UPLOAD'
- 10. Wait until the update have finished

2.2 UART DFU

When the device is in DFU mode, it can be programmed from the command line using nrfutil, which is a Python program provided by Nordic that can be installed using:

pip install nrfutil

- 1. Connect the XB122 together with XM122 to your PC with a micro USB cable to the USB connector
- 2. Press and hold the "DFU" button on the board
- 3. Press the "RESET" button (still holding the "DFU" button)
- 4. Release the "RESET" button
- 5. Release the "DFU" button

Your XM122 device is now in 'DFU' mode waiting for a software upgrade procedure to be started.

Flash the device as follows:

```
nrfutil dfu serial -pkg acc_module_server_dfu_package_xm122.zip -p /dev/ttyUSB0
```

where "/dev/ttyUSB0" is the serial port designation assigned by the operating system to the XB122 board when plugging it in. On Windows this might be 'COM1' or similar instead.

After a few seconds, nrfutil will print a message saying "No trigger interface found". That's because USB implementations of DFU may include a special interface for putting the connected device into DFU mode. No such interface is available here because we're only using USB to emulate a UART connection.

Another few seconds later, the actual DFU process will begin. When finished, the device will reset and boot into the newly installed application.

2.3 Flash using J-Link

Installing the software image with a J-Link can be done with help of nrfjprog:

- 1. Download and install "nRF5x Command Line Tools" from www.nordicsemi.com
- 2. Download and install "J-Link Software and Documentation Pack" from www.segger.com
- 3. Download and extract 'S140 SoftDevice version 6.1.1" from www.nordicsemi.com

```
nrfjprog -f nrf52 --eraseall
nrfjprog -f nrf52 --program acc_module_server.hex --sectorerase --verify
nrfjprog -f nrf52 --program s140_nrf52_6.1.1_softdevice.hex --sectorerase --
    verify
nrfjprog -f nrf52 --reset
```

Note that this will remove the bootloader which can be restored if needed.

2.4 Restore Bootloader

A backup copy of the bootloader is delivered as part of the "production_sw.hex" file, which also includes Nordic's softdevice (containing their Bluetooth stack). Bootloader and softdevice has been merged into a single hex file, because as of version 15.3.0 of the Nordic SDK they cannot be flashed separately.

To restore an XM122 device to its factory condition, do the following using a J-Link:

- 1. Download and install "nRF5x Command Line Tools" from www.nordicsemi.com
- 2. Download and install "J-Link Software and Documentation Pack" from www.segger.com

```
nrfjprog -f nrf52 --erasepage 0xFE000-0x100000
nrfjprog -f nrf52 --program production_sw.hex --sectorerase --verify
nrfjprog -f nrf52 --reset
```


3 Power Save

Related Physical pins:

Pin Name	Functionality	Description
P0.22	WAKE_UP	Not implemented.
P0.24	MCU_INT	This pin is active high. Also see "INTERRUPT_MODE" and
		"INTERRUPT_MASK" registers.

The power consumption of the module is mainly affected by three registers: MODULE_POWER_MODE, SENSOR_POWER_MODE and UPDATE_RATE.

The registers for SENSOR_POWER_MODE, UPDATE_RATE and REPETITION_MODE mostly corresponds to the configuration for respective service and detector in the software API, see the documents at developer.acconeer.com.

3.1 MODULE_POWER_MODE

This register is not implemented.

3.2 SENSOR_POWER_MODE

The values corresponds towards the different ACC_POWER_SAVE_MODE_ modes in the RSS API: OFF(0), SLEEP(1), READY(2), ACTIVE(3), HIBERNATE(4). See the Service User Guide for respective service for more information.

Not all modes support this register, see the documentation for respective detector or service.

3.3 UPDATE_RATE

This controls the update rate. A value of 0 together with REPETITION_MODE set to 0x02 (on demand) means that the data is served as fast as possible once the data ready bit in the status register have been cleared by writing 0x04 to the MAIN_CONTROL register.

Not all modes support this register, see the documentation for respective detector or service.

3.4 REPETITION_MODE

This controls if the sensor or the module controls the update rate.

Not all modes support this register, see the documentation for respective detector or service.

4 Startup Timing

After providing power to the module or after a reset there is a 500 ms delay before the software is ready to be used.

During this period no communication should be performed with the module. This delay is mostly caused by the bootloader and can be decreased to 25 ms by removing it, see "Flash using J-Link".

5 Physical Interfaces

5.1 UART protocol

5.1.1 UART settings

The baud rate can be adjusted by writing to the UART_BAUDRATE register with the following sequence:

- 1. Write desired baudrate to the UART_BAUDRATE register
- 2. Wait for the "Register Write Response" packet
- 3. Change to the new baudrate

Default baud rate	115200
Byte size	8-bit
Parity	None
Flow control	RTS/CTS

The maximum supported baud rate is 1 Mbps. This can also be read from the PRODUCT_MAX_UART_BAUDRATE register.

Supported baud rates:

Configured baud rate	Actual baud rate
115200	115942
230400	231884
250000	250000
460800	470588
921600	941176
1000000	1000000

When using the XM122 together with XB122 the FT230XS is used between the host computer. FT230XS calculates its actual used baud rate as:

Baud rate = 3000000 / (N + x)

where 'N' can be any integer between 2 and 16,384 (= 214) and 'N' can be a sub-integer of the value 0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, or 0.875. When N = 1, x = 0, i.e. baud rate divisors with values between 1 and 2 are not possible.

5.1.2 Byte Order

Multi byte integers are coded in little endian format.

5.1.3 Payload length

The payload length below is the length of the packet excluding start marker, the payload length itself, packet type and end marker. It can be used to read a packet without knowing anything about the different packet types. Also see 5.1.11 for a couple of example UART packages.

5.1.4 Register Read Request

Start	Payload	Packet Type	Register Address	End Marker
marker	length			
0xCC	2 bytes	0xF8	1 byte	0xCD

5.1.5 Register Read Response

Start	Payload	Packet Type	Register	Register	End Marker
marker	length		address	value	
0xCC	2 bytes	0xF6	1 byte	4 bytes	0xCD

5.1.6 Register Write Request

Start	Payload	Packet Type	Register	Register	End Marker
marker	length		address	value	
0xCC	2 bytes	0xF9	1 byte	4 bytes	0xCD

5.1.7 Register Write Response

Start	Payload	Packet Type	Register	Register	End Marker
marker	length		address	value	
0xCC	2 bytes	0xF5	1 byte	4 bytes	0xCD

5.1.8 Buffer Read Request

Start	Payload	Packet Type	Buffer	Buffer	End Marker
marker	length		index	offset	
0xCC	2 bytes	0xFA	0xE8	2 bytes	0xCD

5.1.9 Buffer Read Response

Start	Payload	Packet Type	Buffer	Buffer	End Marker
marker	length		index	data	
0xCC	2 bytes	0xF7	0xE8		0xCD

5.1.10 Buffer Streaming Payload

The streaming mode is primarily intended for communication with the Acconeer Python exploration package that is available on GitHub. The format of the steaming payload may be updated in a non-backward compatible way in future versions of the module software.

Start	Payload	Packet Type	Streaming	End Marker
marker	length		payload	
0xCC	2 bytes	0xFE		0xCD

The streaming payload consists of:

Result info	Result info	Result info	Buffer	Buffer	Buffer
marker	length		marker	length	
0xFD	2 bytes		0xFE	2 bytes	

The result info and the streaming buffer are the outputs from the Acconeer Service APIs encoded in little endian format.

The result info is a list of register (1 byte) and its value (4 bytes). The number of items in result info depends on the current mode. The list is terminated with 0xFE. More data may be added in future versions of the module software.

The format of the streaming buffer depends on the service.

Note that a streaming packet is sent asynchronous which means that the client must be able to handle that a streaming packet is received when e.g. a "Register Write Request" is sent but the "Register Write Response" has not yet been received.

Service	Streaming buffer format				
Power Bin	Array of 32-bit floats				
Envelope	Array o	of 16-bit unsigned in	tegers		
IQ	Array o	of complex int16 (2)	x 16bits). Can also	be in	nterpreted as an array of int16 where the real and
	imagin	ary parts of the comp	plex numbers are	interle	eaved.
	Offset	Description			
	0	0: No presence dete	ected		
Presence	0	1: Presence detected	d		
	14	4 Score (float)			
	58	Distance (float)			
		C	Offset	Desc	ription
Distance	For eac	ch detected object: $\overline{(1)}$	N*6)(N*6+1)	Amp	litude (uint16)
		[]	N*6+2)(N*6+5)	Dista	nce (float)
	For each detected obstacle:		Offset		Description
Obstacle			(N*12)(N*12+3)		Radial velocity (float)
Obstacle			(N*12+4)(N*12	2+7)	Distance (float)
			(N*12+8)(N*12	2+11)	Amplitude (float)

5.1.11 Examples

5.1.12 Read Status Register

 $\boxed{0xCC |0x01|0x00|0xF8|0x06|0xCD}$

5.1.13 Write Mode

 $\boxed{0xCC|0x05|0x00|0xF9|0x02|0x02|0x00|0x00|0x00|0xCD}$

5.1.14 Buffer Streaming Payload

Index	Data	Description
0	0xCC	Start marker
12	0x3E 0x10	Payload length = $0x103E = 4158$ bytes
3	0xFE	Packet type (Buffer streaming payload)
4	0xFD	Result info marker
56	0x14 0x00	Result info length = $0x0014 = 20$ bytes
7	0xA1	Register 0xA1 (MISSED_DATA)
811	0x00 0x00 0x00 0x00	MISSED_DATA Value = 0x0000 0000 (No missed data)
12	0xA0	Register 0xA0 (DATA_SATURATED)
1316	0x00 0x00 0x00 0x00	DATA_SATURATED Value = $0x000000000$ (Data not saturated)
17	0xA3	Register 0xA3 (DATA_QUALITY_WARNING)
1821	0x00 0x00 0x00 0x00	DATA_QUALITY_WARNING Value (No data quality warning)
22	0xA4	Register 0xA4 (SENSOR_COMM_ERROR)
2326	0x00 0x00 0x00 0x00	SENSOR_COMM_ERROR Value (No comm error)
27	0xFE	Buffer marker
2829	0x24 0x10	Buffer length = $0x1024 = 4132$ Bytes
3031	0xF4 0x00	Envelope data index $0 = 0x00F4$
3233	0xFA 0x00	Envelope data index $1 = 0x00FA$
3435	0x00 0x01	Envelope data index $2 = 0x0100$
354124	•••	Envelope data index 32065
4125	0xCD	End marker

5.2 I²C protocol

The module server supports communicating using I²C. Note that it is required that the host supports "clock stretching".

The I^2C address is 0x52.

	Functionality
	I ² C Data
P0.23	I ² C Clock

5.2.1 I²C Register Read Request

In order to read a register an I²C write transaction should first be performed:

Packet Type	Register Address
0xF8	1 byte

After this the register value can be read with an I2C read transaction:

Register Value	е
4 bytes	

5.2.2 I²C Register Write Request

Register write can be performed in one transaction:

Packet Type	Register Address	Register Value
0xF9	1 byte	4 bytes

5.2.3 I²C Buffer Read Request

In order to read the buffer content an I²C write transaction should first be performed:

Packet Type	Buffer Index	Buffer Offset
		2 bytes

After this the buffer can be read with an I²C read transaction:

Buffer Data

5.2.4 I²C Register Read Request Example

The following image shows an example when reading register 0x20 (RANGE_START). The returned register value in this example is 0xC8 (=200) mm.

5.2.5 I²C Register Write Request Example

The following image shows an example when writing 1000 (0x03E8) to register 0x20 (RANGE_START).

6 Register Map

6.1 General Registers

Addr	Read/ Write	Register Name	Function	
0x02	R/W	MODE_SELECTION		e of the supported sensor or service mode fo
0.0.2	10, 11	WIODE_SEELE TION	the module.	
			0x01:	Power bins service mode.
			0x02:	Envelope service mode.
			0x03:	IQ service mode.
			0x04:	Sparse service mode.
			0x200:	Distance detector mode.
			0x300:	Obstacle detector mode.
			0x400:	Presence detector mode.
0x03	W	MAIN_CONTROL	operation o	rol Register. This register is used to control the fifth the module.
			0x00:	Stop any started service or detector.
			0x01:	Create the current service or detector. Sets the 'error_creation' status bit in case of error.
			0x02:	Activate the current service or detector. Sets the 'error_activation' status bit in case of failure.
			0x03:	Create and activate the current service or detector.
			0x04:	Clears any status bits in the status register.
0x05 R/W STREAMING_CONTROL Controls the streaming functionality.		STREAMING_CONTROL		<u> </u>
OAOS			0x00:	Disables UART data streaming.
0.000			$\frac{0x00:}{0x01:}$	Enables UART data streaming.

	Read/ Write	Register Name	Function
IUVUD IR ISTATUS		Module Status Register. This register is a bit mask wi	
	1		current status of the module.
			0x00000000: No bits set.
			0x000000FF: Bits that can't be cleared with the clear status command.
			0xFFFFF00: Mask with bits that can be cleared.
			0xFFFF0000: Mask with error bits.
			0x00000001: Service or detector is created.
			0x00000002: Service or detector is activated.
			0x00000100: Data is ready to be read from the buffer.
			0x00010000: An error occurred in the module.
			0x00020000: Invalid command or parameter received.
			0x00040000: Invalid mode
			0x00080000: Error creating the requested service or detector.
			0x00100000: Error activating the requested service or detector.
			An attempt to write a register or read 0x00200000: the buffer when the module is in wrong state.
			product_max_uart_baudrate register to get the maximu
			supported baudrate. 0x1C200: Default baudrate for the module.
			supported baudrate. 0x1C200: Default baudrate for the module.
0x08	R/W	INTERRUPT_MASK	Supported baudrate. 0x1C200: Default baudrate for the module. Mask for interrupts. Interrupt is active who corresponding bit in the status register is set. The interrupt is inactive when the bit is cleared. Also see
0x08	R/W	INTERRUPT_MASK	Supported baudrate. 0x1C200: Default baudrate for the module. Mask for interrupts. Interrupt is active who corresponding bit in the status register is set. The interrupt is inactive when the bit is cleared. Also so interrupt_mode register.
0x08	R/W	INTERRUPT_MASK	Supported baudrate. 0x1C200: Default baudrate for the module. Mask for interrupts. Interrupt is active who corresponding bit in the status register is set. The interrupt is inactive when the bit is cleared. Also see
0x08	R/W	INTERRUPT_MASK	Supported baudrate. 0x1C200: Default baudrate for the module. Mask for interrupts. Interrupt is active who corresponding bit in the status register is set. The interrupt is inactive when the bit is cleared. Also so interrupt mode register. 0x00000000: No interrupts. 0x000000001: Interrupt when service or detector is
0x08	R/W	INTERRUPT_MASK	Supported baudrate. Ox1C200: Default baudrate for the module. Mask for interrupts. Interrupt is active who corresponding bit in the status register is set. The interrupt is inactive when the bit is cleared. Also so interrupt_mode register. Ox00000000: No interrupts. Ox000000001: Interrupt when service or detector is created. Ox000000002: Interrupt when service or detector is activated.
0x08	R/W	INTERRUPT_MASK	Supported baudrate. 0x1C200: Default baudrate for the module. Mask for interrupts. Interrupt is active who corresponding bit in the status register is set. The interrupt is inactive when the bit is cleared. Also so interrupt mode register. 0x00000000: No interrupts. 0x000000001: Interrupt when service or detector is created. 0x000000002: Interrupt when service or detector is
0x08	R/W	INTERRUPT_MASK	Supported baudrate. Ox1C200: Default baudrate for the module. Mask for interrupts. Interrupt is active who corresponding bit in the status register is set. The interrupt is inactive when the bit is cleared. Also so interrupt mode register. Ox00000000: No interrupts. Ox000000001: Interrupt when service or detector is created. Ox00000002: Interrupt when service or detector is activated. Ox000000100: Interrupt on data ready.
0x08	R/W	INTERRUPT_MASK	Supported baudrate. Ox1C200: Default baudrate for the module. Mask for interrupts. Interrupt is active who corresponding bit in the status register is set. The interrupt is inactive when the bit is cleared. Also so interrupt mode register. Ox00000000: No interrupts. Ox000000001: Interrupt when service or detector is created. Ox00000002: Interrupt when service or detector is activated. Ox000001000: Interrupt on data ready. Ox00010000: Interrupt on error.
0x08	R/W	INTERRUPT_MASK	Supported baudrate. Ox1C200: Default baudrate for the module. Mask for interrupts. Interrupt is active who corresponding bit in the status register is set. The interrupt is inactive when the bit is cleared. Also so interrupt mode register. Ox00000000: No interrupts. Ox00000000: Interrupt when service or detector is created. Ox000000002: Interrupt when service or detector is activated. Ox00000100: Interrupt on data ready. Ox00010000: Interrupt on error. Ox00020000: Interrupt on invalid command. Ox00040000: Interrupt on invalid mode. Ox00080000: Interrupt on error creating service or detector.
0x08	R/W	INTERRUPT_MASK	Supported baudrate. 0x1C200: Default baudrate for the module. Mask for interrupts. Interrupt is active who corresponding bit in the status register is set. The interrupt is inactive when the bit is cleared. Also so interrupt mode register. 0x00000000: No interrupts. 0x00000000: Interrupt when service or detector is created. 0x000000002: Interrupt when service or detector is activated. 0x00000100: Interrupt on data ready. 0x00010000: Interrupt on error. 0x00020000: Interrupt on invalid command. 0x00040000: Interrupt on invalid mode. Interrupt on error creating service or

Addr	Read/ Write	Register Name	Function	
0x09	R/W	INTERRUPT_MODE	Set mode f	For interrupt
			0x00:	Interrupt disabled, MCU_INT pin is
			UXUU.	always inactive.
			0x01:	MCU_INT is active when interrupt is
			UXU1.	active.
				active.

0x0A	R/W	MODULE_POWER_MODE		rer configuration. This register is hardware described in the "Power Save" chapter.
0x10	R	PRODUCT_IDENTIFICATION	Module Iden	tification register.
			0xACC0:	The module is a XM112.
			0xACC1:	The module is a XM122.
			0xACC2:	The module is a XM132.
			0xACC3:	The module is a XM131.
			0xACC5:	The module is a XM124.
			0xACC6:	The module is a XM123.

0x11	R	PRODUCT VERSION	Software product version register as 0xMMIIPP where MM is major, II is minor and PP is patch version.
0x12	R	PRODUCT_MAX_UART_BAUDRATE	The maximum UART baudrate supported by the module.
0xE9	R	OUTPUT_BUFFER_LENGTH	Length of data in output buffer.

6.2 Power Bin Registers

Registers which are writable can be used to set a configuration. Registers which are read only contain metadata which is updated either after create or when data is produced. It is recommended to read the service and detector user guides for more information on configuration and metadata.

Addr	Read/ Write	Register Name	Function	
0x20	R/W	RANGE_START	Start range	in mm of the measurement.
0x21	R/W	RANGE_LENGTH	Length of t	he range in mm.
0x22	R/W	REPETITION_MODE	Repetition mode for the measurement.	
			0x01:	The sensor controls the update rate with high precision according to the value in the update_rate register.
			0x02:	The update rate is software limited according to the value in the update_rate register. A value of 0 means no limit of the update rate.

			The meas	urement update rate in mHz (i.e. step in
0x23	R/W	UPDATE_RATE	1/1000Hz)	. See the repetition_mode register for more
			informatio	n.
0x24	R/W	GAIN	Receiver g	gain, 0-1000 where 0 is the lowest gain and
UX24	IX/ W	GAIN	1000 the h	ighest.
0x25	R/W	SENSOR_POWER_MODE	Radar sens	sor power mode. See the Service User Guide
UXZJ	R/W SENSORI OWERINODE		for respect	ive service for more information.
				Sensor off power mode. Whole
			0x00:	sensor is shutdown between sweeps,
		UXUU.	consumes least power, supports lower	
				frequencies.
			0x01:	Sensor sleep power mode.
			0x02:	Sensor ready power mode.
				Sensor active power mode. Whole
			0x03:	sensor is active. Consumes most
				power, supports higher frequencies.
				Sensor hibernate power mode. Sensor
				is still powered but the internal

0x04:

0x26	R/W	TX_DISABLE	I	neasure RX noise floor and to support TX offeegulation measurements.
0x28	R/W	PROFILE_SELECTION		ile consists of a number of settings for the t configures the RX and TX paths.
			0x01:	Profile 1 maximizes on the depth resolution
			0x02:	Sliding scale between profile 1 and 5.
			0x03:	Sliding scale between profile 1 and 5.
			0x04:	Sliding scale between profile 1 and 5.
			0x05:	Profile 5 maximizes on radar loop gain with a sliding scale in between.

continued ...

oscillator is turned off and the application needs to clock the sensor by toggling a GPIO a pre-defined

number of times to enter and exit this mode. Only supported for the sparse service on XM122, XM123, XM124,

XM131 and XM132 currently.

Addr	Read/ Write	Register Name	Function
0x29	R/W	DOWNSAMPLING_FACTOR	Downsampling factor to be used in sensor.
0x30	R/W	HW_ACC_AVERAGE_SAMPLES	The number of hardware accelerated averaged samples for each data point.
0x31	R/W	NOISE_LEVEL_NORMALIZATION	Noise level normalization scale the signal according to the sensor noise level, default enabled.
0x32	R/W	MAXIMIZE_SIGNAL_ATTENUATIO	Maximize signal attenuation to avoid saturation in direct leakage.
0x33	R/W	ASYNCHRONOUS_MEASUREMEN	Used to enable/disable asynchronous mode.
0x34	R/W	MUR	The maximum unambiguous range.
	•		0x06: Maximum unambiguous range 11.5 m, maximum measurable distance 7.0 m
			0x09: Maximum unambiguous range 17.3 m, maximum measurable distance 12.7 m

0x40	R/W	REQ_BIN_COUNT	Number of requested power bins
0x81	R	START	Start of the sweep in mm.
0x82	R	LENGTH	Length of the sweep in mm.
0x83	R	BIN_COUNT	Bin count.
0x84	R	STITCH_COUNT	Sweep has got stitch_count number of stitches.
0x85	R	STEP_LENGTH	Distance in um between adjacent data points.
0xA0	R DATA_SATURATED		Indication of sensor data being saturated, can cause result
UXAU	K	DAIA_SAI OKATED	instability.
0xA1	R	MISSED_DATA	True if data was lost. Try lowering the update_rate or read
UAAI	IX.	WIISSED-DATA	the data more often.
0xA3	R	DATA_QUALITY_WARNING	True if bad data quality. May be addressed by restarting
UAAS	R DAIA-QUALITI-WARNING		the current service or detector.
0xA4	R SENSOR_COMM_ERROR		True is an indication of a sensor communication error,
UAA4	IX.	SENSOR_COMM_ERROR	service or detector probably needs to be restarted.

6.3 Envelope Registers

Registers which are writable can be used to set a configuration. Registers which are read only contain metadata which is updated either after create or when data is produced. It is recommended to read the service and detector user guides for more information on configuration and metadata.

Addr	Read/ Write	Register Name	Function	
0x20	R/W	RANGE_START	Start range	in mm of the measurement.
0x21	R/W	RANGE_LENGTH	Length of t	the range in mm.
0x22	R/W	REPETITION_MODE	Repetition mode for the measurement.	
			0x01:	The sensor controls the update rate with high precision according to the value in the update_rate register.
			0x02:	The update rate is software limited according to the value in the update_rate register. A value of 0 means no limit of the update rate.

0x23	R/W	UPDATE_RATE		urement update rate in mHz (i.e. step in). See the repetition_mode register for more on.
0x24	R/W	GAIN	Receiver § 1000 the h	gain, 0-1000 where 0 is the lowest gain and ighest.
0x25	R/W	SENSOR_POWER_MODE		sor power mode. See the Service User Guide tive service for more information.
			0x00:	Sensor off power mode. Whole sensor is shutdown between sweeps, consumes least power, supports lower frequencies.
			0x01:	Sensor sleep power mode.
			0x02:	Sensor ready power mode.
			0x03:	Sensor active power mode. Whole sensor is active. Consumes most power, supports higher frequencies.
			0x04:	Sensor hibernate power mode. Sensor is still powered but the internal oscillator is turned off and the application needs to clock the sensor by toggling a GPIO a pre-defined number of times to enter and exit this mode. Only supported for the sparse service on XM122, XM123, XM124, XM131 and XM132 currently.

0x26	R/W	TX_DISABLE		neasure RX noise floor and to support TX off regulation measurements.
0x28	R/W	PROFILE_SELECTION		file consists of a number of settings for the t configures the RX and TX paths.
			0x01:	Profile 1 maximizes on the depth resolution
			0x02:	Sliding scale between profile 1 and 5.
			0x03:	Sliding scale between profile 1 and 5.
			0x04:	Sliding scale between profile 1 and 5.
			0x05:	Profile 5 maximizes on radar loop gain
			0x03.	with a sliding scale in between.

Addr	Read/ Write	Register Name	Function
0x29	R/W	DOWNSAMPLING_FACTOR	Downsampling factor to be used in sensor.
0x30	R/W	HW_ACC_AVERAGE_SAMPLES	The number of hardware accelerated averaged samples for each data point.
0x31	R/W	NOISE_LEVEL_NORMALIZATION	Noise level normalization scale the signal according to the sensor noise level, default enabled.
0x32	R/W	MAXIMIZE_SIGNAL_ATTENUATIO	Maximize signal attenuation to avoid saturation in direct leakage.
0x33	R/W	ASYNCHRONOUS_MEASUREMEN	Used to enable/disable asynchronous mode.
0x34	R/W	MUR	The maximum unambiguous range.
	•		0x06: Maximum unambiguous range 11.5 m, maximum measurable distance 7.0 m
			0x09: Maximum unambiguous range 17.3 m, maximum measurable distance 12.7 m

0x40	R/W	RUN_FACTOR	The running average factor is the factor of which the most recent sweep is weighed against previous sweeps. Value between 0 and 1000 where 0 means that no history is weighed in, i.e filtering is effectively disabled.
0x81	R	START	Start of the sweep in mm.
0x82	R	LENGTH	Length of the sweep in mm.
0x83	R	DATA_LENGTH	Length of the envelope data.
0x84	R	STITCH_COUNT	Sweep has got stitch_count number of stitches.
0x85	R	STEP_LENGTH	Distance in um between adjacent data points.
0xA0	R	DATA_SATURATED	Indication of sensor data being saturated, can cause result instability.
0xA1	R	MISSED_DATA	True if data was lost. Try lowering the update_rate or read the data more often.
0xA3	R	DATA_QUALITY_WARNING	True if bad data quality. May be addressed by restarting the current service or detector.
0xA4	R	SENSOR_COMM_ERROR	True is an indication of a sensor communication error, service or detector probably needs to be restarted.

6.4 IQ Registers

Registers which are writable can be used to set a configuration. Registers which are read only contain metadata which is updated either after create or when data is produced. It is recommended to read the service and detector user guides for more information on configuration and metadata.

Addr	Read/ Write	Register Name	Function	
0x20	R/W	RANGE_START	Start range	e in mm of the measurement.
0x21	R/W	RANGE_LENGTH	Length of	the range in mm.
0x22	R/W	REPETITION_MODE	Repetition mode for the measurement.	
			0x01:	The sensor controls the update rate with high precision according to the value in the update_rate register.
			0x02:	The update rate is software limited according to the value in the update_rate register. A value of 0 means no limit of the update rate.

0x23	R/W	UPDATE_RATE		urement update rate in mHz (i.e. step in). See the repetition_mode register for more on.
0x24	R/W	GAIN	Receiver § 1000 the h	gain, 0-1000 where 0 is the lowest gain and ighest.
0x25	R/W	SENSOR_POWER_MODE		sor power mode. See the Service User Guide tive service for more information.
			0x00:	Sensor off power mode. Whole sensor is shutdown between sweeps, consumes least power, supports lower frequencies.
			0x01:	Sensor sleep power mode.
			0x02:	Sensor ready power mode.
			0x03:	Sensor active power mode. Whole sensor is active. Consumes most power, supports higher frequencies.
			0x04:	Sensor hibernate power mode. Sensor is still powered but the internal oscillator is turned off and the application needs to clock the sensor by toggling a GPIO a pre-defined number of times to enter and exit this mode. Only supported for the sparse service on XM122, XM123, XM124, XM131 and XM132 currently.

0x26	R/W	TX_DISABLE		neasure RX noise floor and to support TX off regulation measurements.
0x28	R/W	PROFILE_SELECTION		file consists of a number of settings for the t configures the RX and TX paths.
			0x01:	Profile 1 maximizes on the depth resolution
			0x02:	Sliding scale between profile 1 and 5.
			0x03:	Sliding scale between profile 1 and 5.
			0x04:	Sliding scale between profile 1 and 5.
			0x05:	Profile 5 maximizes on radar loop gain
			UXU5:	with a sliding scale in between.

Addr	Read/ Write	Register Name	Function
0x29	R/W	DOWNSAMPLING_FACTOR	Downsampling factor to be used in sensor.
0x30	R/W	HW_ACC_AVERAGE_SAMPLES	The number of hardware accelerated averaged samples for each data point.
0x31	R/W	NOISE_LEVEL_NORMALIZATION	Noise level normalization scale the signal according to the sensor noise level, default enabled.
0x32	R/W	MAXIMIZE_SIGNAL_ATTENUATION	Maximize signal attenuation to avoid saturation in direct leakage.
0x33	R/W	ASYNCHRONOUS_MEASUREMENT	Used to enable/disable asynchronous mode.
0x41	R/W	DEPTH_LPF_RATIO_OVERRIDE	If not 0, the depth lowpass cutoff ratio will be overridden with the value set in depth_lpf_ratio_value
0x42	R/W	DEPTH_LPF_RATIO_VALUE	If iq_depth_lpf_ratio_override is not 0, the depth lowpass cutoff ratio will be overridden with this value divided by 1000000
0x43	R/W	PROXIMITY_POWER	True to enable a power bin with information close to the sensor
0x81	R	START	Start of the sweep in mm.
0x82	R	LENGTH	Length of the sweep in mm.
0x83	R	DATA_LENGTH	Length of the IQ data.
0x84	R	STITCH_COUNT	Sweep has got stitch_count number of stitches.
0x85	R	STEP_LENGTH	Distance in um between adjacent data points.
0x86	R	DEPTH_LPF_RATIO_USED	The used depth lowpass cutoff ratio multiplied by 1000000
0xA0	R	DATA_SATURATED	Indication of sensor data being saturated, can cause result instability.
0xA1	R	MISSED_DATA	True if data was lost. Try lowering the update_rate or read the data more often.
0xA2	R	PROXIMITY_POWER	Power bin with information close to the sensor. Require proximity power to be enabled.
0xA3	R	DATA_QUALITY_WARNING	True if bad data quality. May be addressed by restarting the current service or detector.
0xA4	R	SENSOR_COMM_ERROR	True is an indication of a sensor communication error, service or detector probably needs to be restarted.

6.5 Sparse Registers

Registers which are writable can be used to set a configuration. Registers which are read only contain metadata which is updated either after create or when data is produced. It is recommended to read the service and detector user guides for more information on configuration and metadata.

Addr	Read/ Write	Register Name	Function		
0x20	R/W	RANGE_START	Start range in mm of the measurement.		
0x21	R/W	RANGE_LENGTH	Length of t	the range in mm.	
0x22	R/W	REPETITION_MODE	Repetition	mode for the measurement.	
			0x01:	The sensor controls the update rate with high precision according to the value in the update_rate register.	
			0x02:	The update rate is software limited according to the value in the update_rate register. A value of 0 means no limit of the update rate.	

			The meas	urement update rate in mHz (i.e. step in
0x23	R/W	UPDATE_RATE). See the repetition_mode register for more
			informatio	on.
0x24	R/W	GAIN		gain, 0-1000 where 0 is the lowest gain and
OAZ I	10 11	G/ III V	1000 the h	
0x25	R/W	SENSOR_POWER_MODE		sor power mode. See the Service User Guide
			for respect	tive service for more information.
				Sensor off power mode. Whole
			0x00:	sensor is shutdown between sweeps,
			0.100.	consumes least power, supports lower
				frequencies.
			0x01:	Sensor sleep power mode.
			0x02:	Sensor ready power mode.
				Sensor active power mode. Whole
			0x03:	sensor is active. Consumes most
				power, supports higher frequencies.
				Sensor hibernate power mode. Sensor
				is still powered but the internal
				oscillator is turned off and the
				application needs to clock the sensor
			0x04:	by toggling a GPIO a pre-defined
				number of times to enter and exit this
				mode. Only supported for the sparse
				service on XM122, XM123, XM124,
				XM131 and XM132 currently.

0x26	R/W	TX_DISABLE		neasure RX noise floor and to support TX of regulation measurements.
0x28	R/W	PROFILE_SELECTION	1 *	file consists of a number of settings for the t configures the RX and TX paths.
			0x01:	Profile 1 maximizes on the depth resolution
			0x02:	Sliding scale between profile 1 and 5.
			0x03:	Sliding scale between profile 1 and 5.
			0x04:	Sliding scale between profile 1 and 5.
			0x05:	Profile 5 maximizes on radar loop gain
			0x03.	with a sliding scale in between.

Addr	Read/ Write	Register Name	Function	
0x29	R/W	DOWNSAMPLING_FACTOR	Downsampling	g factor to be used in sensor.
0x30	R/W	HW_ACC_AVERAGE_SAMPLES	The number of or each data p	f hardware accelerated averaged samples oint.
0x32	R/W	MAXIMIZE_SIGNAL_ATTENUATIO	Maximize sign leakage.	nal attenuation to avoid saturation in direct
0x33	R/W	ASYNCHRONOUS_MEASUREMEN	Used to enable	/disable asynchronous mode.
0x34	R/W	MUR	The maximum	unambiguous range.
			0x06:	Maximum unambiguous range 11.5 m, maximum measurable distance 7.0 m
			0x09:	Maximum unambiguous range 17.3 m, maximum measurable distance 12.7 m

0x40	R/W	SPARSE_SWEEPS_PER_FRAME	The number of sweeps per frame.
0x41	R/W	SPARSE_REQ_SWEEP_RATE	The sweep rate in mHz. Set to 0 for maximum possible.
0x42	R/W	SPARSE_SAMPLING_MODE	Sampling mode
			0x00: A
			0x01: B

0x81	R	START	Start of the sweep in mm.
0x82	R	LENGTH	Length of the sweep in mm.
0x83	R	DATA_LENGTH	Length of the sparse data.
0x84	R	SWEEP_RATE	Sweep rate in mHz.
0x85	R	STEP_LENGTH	Distance in um between adjacent data points.
0xA0	R	DATA_SATURATED	Indication of sensor data being saturated, can cause result
OAI 10	1	Di III I SI II GRI II EB	instability.
0xA1	R	MISSED DATA	True if data was lost. Try lowering the update_rate or read
UAAI	IX.	WISSED_DATA	the data more often.
0xA4	R	SENSOR_COMM_ERROR	True is an indication of a sensor communication error,
UAA4	IX	SENSOR COMMILERROR	service or detector probably needs to be restarted.

6.6 Distance Register

Registers which are writable can be used to set a configuration. Registers which are read only contain metadata which is updated either after create or when data is produced. It is recommended to read the service and detector user guides for more information on configuration and metadata.

Addr	Read/ Write	Register Name	Function	
0x20	R/W	RANGE_START	Start range	e in mm of the measurement.
0x21	R/W	RANGE_LENGTH	Length of	the range in mm.
0x24	R/W	GAIN	Receiver g	gain, 0-1000 where 0 is the lowest gain and ighest.
0x25	R/W	SENSOR_POWER_MODE		sor power mode. See the Service User Guide tive service for more information.
			0x00:	Sensor off power mode. Whole sensor is shutdown between sweeps, consumes least power, supports lower frequencies.
			0x01:	Sensor sleep power mode.
			0x02:	Sensor ready power mode.
			0x03:	Sensor active power mode. Whole sensor is active. Consumes most power, supports higher frequencies.
			0x04:	Sensor hibernate power mode. Sensor is still powered but the internal oscillator is turned off and the application needs to clock the sensor by toggling a GPIO a pre-defined number of times to enter and exit this mode. Only supported for the sparse service on XM122, XM123, XM124, XM131 and XM132 currently.

0x28	R/W	PROFILE_SELECTION		file consists of a number of settings for the t configures the RX and TX paths.
			0x01:	Profile 1 maximizes on the depth resolution
			0x02:	Sliding scale between profile 1 and 5.
			0x03:	Sliding scale between profile 1 and 5.
			0x04:	Sliding scale between profile 1 and 5.
			0x05:	Profile 5 maximizes on radar loop gain with a sliding scale in between.

0x29	R/W	DOWNSAMPLING_FACTOR	Downsampli	ing factor to be used in sensor.
0x30	R/W	HW_ACC_AVERAGE_SAMPLES	The number	of hardware accelerated averaged samples
UXSU	IX/ VV		for each data	a point.
0x32	R/W	MAYIMIZE SIGNAL ATTENHATION	Maximize si	gnal attenuation to avoid saturation in direct
UX32	32 K/ W WIF	WAXIWIZE_SIGNAL_AITENUATIO	leakage.	
0x33	R/W	ASYNCHRONOUS_MEASUREMENT	Used to enab	ole/disable asynchronous mode.
0x34	R/W	MUR	The maximu	ım unambiguous range.
			0x06:	Maximum unambiguous range 11.5 m,
			OXOO.	maximum measurable distance 7.0 m
			0x09:	Maximum unambiguous range 17.3 m,
			UAU7.	maximum measurable distance 12.7 m

Number of sweeps to use for sweep averaging, where 1		
means no averaging.		
Threshold type used when finding peaks in sensor data.		
0x00: Fixed threshold.		
0x02: CFAR threshold.		

0x42	R/W	FIXED_THRESHOLD	Value of fixed threshold. Only used if fixed threshold type
UA+2	IX/ VV		is selected.
0x44	R/W	SENSITIVITY	Set sensitivity of threshold. Value between 0 and 1000.
UATT	10, 11		Only used if cfar threshold type is selected.
			Range in mm around the distance of interest that is
0x45	R/W	CFAR_GUARD	omitted when calculating CFAR threshold. Only used if
			cfar threshold type is selected.
			Range in mm next to the CFAR guard from which the
0x46	R/W	CFAR_WINDOW	threshold level will be calculated. Only used if cfar
			threshold type is selected.
		ONLY_LOWER	Instead of determining the CFAR threshold from sweep
0x47	R/W		amplitudes from distances both closer and father away,
OX-17	10, 11		use only closer. Only used if cfar threshold type is
			selected.
0x48	R/W	V PEAK_SORTING	Peak sorting algoritm specifies in what order peaks
OA 10	10 11		should be reported back to the application.
			0x00: Sort peaks in order closest first.
			0x01: Sort peaks in order strongest first.
			0x02: Sort peaks in order strongest reflector
			first.
			0x03: Sort peaks in order strongest flat
			reflector first.

0x81	R	START	Start of the sweep in mm.	
0x82	R	LENGTH	Length of the sweep in mm.	
0xA0	R	DATA_SATURATED	Indication of sensor data being saturated, can cause result	
UXAU	K	DAIA_SAI ORAIED	instability.	
0xA1	R	MISSED DATA	True if data was lost. Try lowering the update_rate or read	
UAAI	IX.	MISSED_DATA	the data more often.	
0xA3	R	DATA_QUALITY_WARNING	True if bad data quality. May be addressed by restarting	
UXAS	K	DAIA_QUALITY_WARNING	the current service or detector.	
0xA4	R	SENSOR_COMM_ERROR	True is an indication of a sensor communication error,	
UXA4			service or detector probably needs to be restarted.	
0xB0	R	COUNT	Number of detected peaks.	
0xB1	R	1_DISTANCE	Distance in mm to first peak.	
0xB2	R	1_AMPLITUDE	Amplitude of first peak.	
0xB3	R	2_DISTANCE	Distance in mm to second peak.	
0xB4	R	2_AMPLITUDE	Amplitude of second peak.	
0xB5	R	3_DISTANCE	Distance in mm to third peak.	
0xB6	R	3_AMPLITUDE	Amplitude of third peak.	
0xB7	R	4_DISTANCE	Distance in mm to fourth peak.	
0xB8	R	4_AMPLITUDE	Amplitude of fourth peak.	

6.7 Obstacle Register

Registers which are writable can be used to set a configuration. Registers which are read only contain metadata which is updated either after create or when data is produced. It is recommended to read the service and detector user guides for more information on configuration and metadata.

Addr	Read/ Write	Register Name	Function	
0x20	R/W	RANGE_START	Start range in mm of the measurement.	
0x21	R/W	RANGE_LENGTH	Length of the range in mm.	
0x40	R/W	MAX_SPEED	Maximum speed in mm/s	
0x41	R/W	ALLOW_REVERSE	Enable measurements of angle for objects moving away from sensor.	
			0x00: No reverse, allows higher speed at lower sweep frequency.	
			0x01: Enable to measure angle of objects moving away from sensor.	

0x42	R/W	SPEED_HIGHPASS_MASK	The mask transition value as radial speed in mm per second.	
0x43	R/W	RANGE_END_OVERSCAN	The range end overscan in mm.	
0x44	R/W	BACK_EST_ITER	Number of background estimation iterations.	
0x45	R/W	SWEEP_DOWNSAMPLE	A high downsample value will result in less memory usage at resolution cost.	
0x46	R/W	DISTANCE_OFFSET	This offset in mm is subtracted from the reported distance for every obstacle.	
0x47	R/W	EDGE_TO_PEAK_RATIO	edge to peak ratio in 1/1000 units.	
0x48	R/W	PROXIMITY_DETECTION	Enable proximity detection	
0x4B	R/W	THR_STATIONARY	The amplitude threshold for stationary objects close to the sensor.	
0x4C	R/W	THR_MOVING	The amplitude threshold for moving objects and objects far from the sensor.	
0x4D	R/W	THR_DIST_LIMIT_FAR	For distances larger than the far limit, use the moving threshold.	
0x4E	R/W	THR_CLOSE_ADDITION	The amplitude increase at closest distance, applied for a velocities.	
0x4F	R/W	THR_DIST_LIMIT_NEAR	close threshold is applied from first distance in the rang and linearly falls off to close limit.	
0x81	R	UPDATE_RATE	The calculated update rate in mHz for the obstacle detector.	
0xA0	R	DATA_SATURATED	Indication of sensor data being saturated, can cause resu instability.	
0xA1	R	MISSED_DATA	True if data was lost. Try lowering the update_rate or read the data more often.	
0xA2	R	PROXIMITY_DETECTION	True if object is detected close to the sensor. Require proximity detection to be enabled.	
0xA3	R	DATA_QUALITY_WARNING	True if bad data quality. May be addressed by restarting the current service or detector.	
0xA4	R	SENSOR_COMM_ERROR	True is an indication of a sensor communication error, service or detector probably needs to be restarted.	
0xB0	R	COUNT	Number of obstacles.	
0xB1	R	1_RADIAL_VELOCITY	Radial velocity to first obstacle in mm / s	
0xB2	R	1_DISTANCE	Distance in mm to first obstacle	
0xB3	R	1_AMPLITUDE	Amplitude of first obstacle	
0xB4	R	2_RADIAL_VELOCITY	Radial velocity to second obstacle	
0xB5	R	2_DISTANCE	Distance to second obstacle	
0xB6	R	2_AMPLITUDE	Amplitude of second obstacle	
0xB7	R	3_RADIAL_VELOCITY	Radial velocity to third obstacle	

Addr	Read/ Write	Register Name	Function
0xB8	R	3_DISTANCE	Distance to third obstacle
0xB9	R	3_AMPLITUDE	Amplitude of third obstacle

6.8 Presence Registers

Registers which are writable can be used to set a configuration. Registers which are read only contain metadata which is updated either after create or when data is produced. It is recommended to read the service and detector user guides for more information on configuration and metadata.

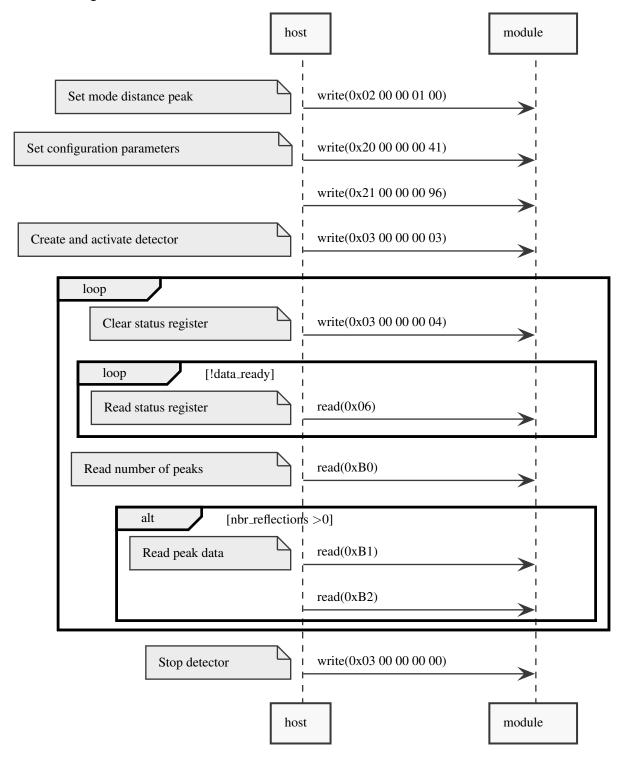
Addr	Read/ Write	Register Name	Function		
0x20	R/W	RANGE_START	Start range	e in mm of the measurement.	
0x21	R/W	RANGE_LENGTH	Length of	the range in mm.	
0x23	R/W	UPDATE_RATE		urement update rate in mHz (i.e. step in). See the repetition_mode register for more on.	
0x24	R/W	GAIN	Receiver g	gain, 0-1000 where 0 is the lowest gain and ighest.	
0x25	R/W	SENSOR_POWER_MODE		Radar sensor power mode. See the Service User Guide for respective service for more information.	
			0x00:	Sensor off power mode. Whole sensor is shutdown between sweeps, consumes least power, supports lower frequencies.	
			0x01:	Sensor sleep power mode.	
			0x02:	Sensor ready power mode.	
			0x03:	Sensor active power mode. Whole sensor is active. Consumes most power, supports higher frequencies.	
			0x04:	Sensor hibernate power mode. Sensor is still powered but the internal oscillator is turned off and the application needs to clock the sensor by toggling a GPIO a pre-defined number of times to enter and exit this mode. Only supported for the sparse service on XM122, XM123, XM124, XM131 and XM132 currently.	

0x28	R/W	PROFILE_SELECTION	Each profile consists of a number of settings for the sensor that configures the RX and TX paths.	
			0x01:	Profile 1 maximizes on the depth resolution
			0x02:	Sliding scale between profile 1 and 5.
			0x03:	Sliding scale between profile 1 and 5.
			0x04:	Sliding scale between profile 1 and 5.
			0x05:	Profile 5 maximizes on radar loop gain with a sliding scale in between.

0x29	R/W	DOWNSAMPLING_FACTOR	Downsampling factor to be used in sensor.
0x30	R/W	$\mathbf{H} \mathbf{W} / \Delta \mathbf{U} = \Delta \mathbf{V} + \mathbf{P} \Delta \mathbf{U} + \mathbf{P} \Delta \mathbf{W} + \mathbf{P} \mathbf{U} + \mathbf{P} \mathbf{W}$	The number of hardware accelerated averaged samples
UASU	IX/ VV		for each data point.
0x33	R/W	ASYNCHRONOUS_MEASUREMENT	Used to enable/disable asynchronous mode.
0x40	R/W	THRESHOLD	Detection threshold in 1/1000 for presence.
0x41	R/W	SWEEPS_PER_FRAME	Sweeps per frame for the data from the underlying
0.41			(sparse) service.
0x42	R/W	W INTER_FRAME_DEV_TIME_CONST	Time constant in 1/1000 s of the low pass filter for the
0.42	IX/ VV		(inter-frame) deviation between fast and slow.
0x43	R/W	INTER ERAME BASI CITOEB	Cutoff frequency in mHz of the low pass filter for the fast
0.43	10/ 11		filtered subsweep mean.
		·	4' 1

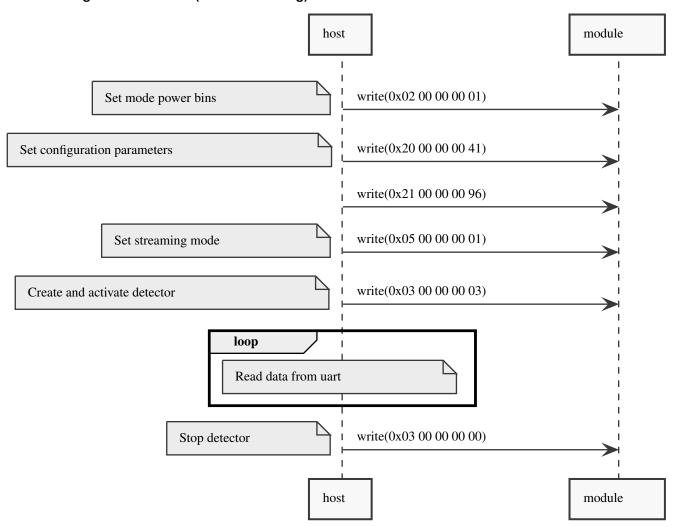
Addr	Read/ Write	Register Name	Function
0x44	R/W	INTER_FRAME_SLOW_CUTOFF	Cutoff frequency in mHz of the low pass filter for the
UATT	10, 11		slow filtered subsweep mean.
0x45	R/W	INTRA_FRAME_TIME_CONST	Time constant in 1/1000 s for the intra frame part.
			The weight, 0-1000, of the intra-frame part in the final
0x46	R/W	INTRA_FRAME_WEIGHT	output. A value of 1000 corresponds to only using the
UX40	K/W	INTRA_FRAME_WEIGHT	intra-frame part and a value of 0 corresponds to only
			using the inter-frame part.
0x47	R/W	OUTPUT_TIME_CONST	Time constant in 1/1000 s of the low pass filter for the
0.47			detector output.
			The number of principal components removed in the
0x48	R/W	NBR_REMOVED_PC	PCA based noise reduction. Value between 0 and 2 where
			0 disables the PCA based noise reduction completely.
0xA0	R	DATA_SATURATED	Indication of sensor data being saturated, can cause result
UXAU			instability.
0xA4	R	SENSOR_COMM_ERROR	True is an indication of a sensor communication error,
UXA4			service or detector probably needs to be restarted.
0xB0	R	DETECTED	Presence detected or not
0xB1	R	SCORE	Score of the detected movement
0xB2	R	DISTANCE	Distance in mm to the detected movement

7 Examples


7.1 Python Example

There is a simple python example delivered together with the module software binary. This shows how to communicate with the module software over the UART interface.

Example:


python3 module_software_example.py --port /dev/ttyUSB0

7.2 Reading Distances

7.3 Reading Power Bin Data (UART Streaming)

8 Disclaimer

The information herein is believed to be correct as of the date issued. Acconeer AB ("Acconeer") will not be responsible for damages of any nature resulting from the use or reliance upon the information contained herein. Acconeer makes no warranties, expressed or implied, of merchantability or fitness for a particular purpose or course of performance or usage of trade. Therefore, it is the user's responsibility to thoroughly test the product in their particular application to determine its performance, efficacy and safety. Users should obtain the latest relevant information before placing orders.

Unless Acconeer has explicitly designated an individual Acconeer product as meeting the requirement of a particular industry standard, Acconeer is not responsible for any failure to meet such industry standard requirements.

Unless explicitly stated herein this document Acconeer has not performed any regulatory conformity test. It is the user's responsibility to assure that necessary regulatory conditions are met and approvals have been obtained when using the product. Regardless of whether the product has passed any conformity test, this document does not constitute any regulatory approval of the user's product or application using Acconeer's product.

Nothing contained herein is to be considered as permission or a recommendation to infringe any patent or any other intellectual property right. No license, express or implied, to any intellectual property right is granted by Acconeer herein.

Acconeer reserves the right to at any time correct, change, amend, enhance, modify, and improve this document and/or Acconeer products without notice.

This document supersedes and replaces all information supplied prior to the publication hereof.

