a((oneer

XM125 12C Ref App Breathing

User Guide

(o
(XM125 I°C Ref App Breathing

XM125 I>C Ref App Breathing
User Guide

Author: Acconeer AB
Version:al21-v1.12.0

Acconeer AB October 15, 2025

© 2025 by Acconeer AB - All rights reserved Page 1 of 22

XM1251>C Ref App Breathing

Contents
1 Acconeer SDK Documentation Overview 3
2 I2C Ref App Breathing 5
2.1 TIPC Address Configuration 5
22 T2CSpeed e e e e e 5
2.3 USAZE . . o v e e e e 5
23.1 Read App Status e e 5
232 Writingacommand L e e e 5
2.3.3 Setup and Start Application e 5
2.34 Stop and Restart Application 6
24 Advanced Usage e e 6
24.1 Debug UART logs e e 6
242 ResetModule e e e e 6
3 Register Protocol 7
3.0 TPCSIave AddIeSS . . . o o v vt 7
3.2 Protocol Byte Order L e e e 7
32,1 TPCWrite ReIStEI(S) . « o o o v v o o e e e e e e e 7
322 TPCRead Re@iSter(S) o v v v v oo e e e e e 7
3.3 Register Protocol - Low Power Mode 9
3.3.1 TI?C Communication with Low Power Mode 9
4 File Structure 10
5 Embedded Host Example 10
5.1 Register Read/Write functions e 10
5.2 Application setup functions L L e e e e e e e e 12
6 Registers 15
6.1 Register Map 15
6.2 Register Descriptions e e e e e e e e e 15
6.2.1 Version e e 15
6.2.2 Protocol Status e e e e e e e e 15
6.2.3 Measure COUNLET v v v v e 16
6.2.4 AppStatus e e 16
6.2.5 BreathingResult e e 17
6.2.6 BreathingRate e e 17
6.2.77 AppState e 17
6.2.8 Start e e e e e e e 18
6.2.9 End 18
6.2.10 Num Distances To Analyze e 18
6.2.11 Distance Determination Duration S 18
6.2.12 Use Presence Processor. o e e 18
6.2.13 LowestBreathingRate L o 19
6.2.14 Highest Breathing Rate 19
6.2.15 Time Series Length S 19
6.2.16 Frame Rate e e 19
6.2.17 SweepsPer Frame 19
6.2.18 Hwaas. e e e e e e 19
6.2.19 Profile e e e e e 19
6.2.20 Intra Detection Threshold 20
6.221 Command e e 20
6.2.22 Application Id L e e 21
7 Disclaimer 22

© 2025 by Acconeer AB - All rights reserved Page 2 of 22

XM125 I2C Ref App Breathing

1 Acconeer SDK Documentation Overview

To better understand what SDK document to use, a summary of the documents are shown in the table below.

Table 1: SDK document overview.

Name | Description | When to use
RSS API documentation (html)
rss_api The complete C API documentation. - RSS application implementation

- Understanding RSS API functions

User guides (PDF)

A121 Assembly Test

Describes the Acconeer assembly
test functionality.

- Bring-up of HW/SW
- Production test implementation

A121 Breathing
Reference Application

Describes the functionality of the
Breathing Reference Application.

- Working with the Breathing
Reference Application

A121 Distance Detector

Describes usage and algorithms
of the Distance Detector.

- Working with the Distance Detector

A121 SW Integration

Describes how to implement each
integration function needed to use
the Acconeer sensor.

- SW implementation of
custom HW integration

A121 Presence Detector

Describes usage and algorithms
of the Presence Detector.

- Working with the Presence Detector

A121 Smart Presence
Reference Application

Describes the functionality of the
Smart Presence Reference Application.

- Working with the Smart Presence
Reference Application

A121 Sparse 1Q Service

Describes usage of the Sparse 1Q
Service.

- Working with the Sparse I1Q Service

A121 Tank Level
Reference Application

Describes the functionality of the
Tank Level Reference Application.

- Working with the Tank Level
Reference Application

A121 Touchless Button
Reference Application

Describes the functionality of the

Touchless Button Reference Application.

- Working with the Touchless Button
Reference Application

A121 Parking
Reference Application

Describes the functionality of the
Parking Reference Application.

- Working with the Parking
Reference Application

Describes the flow of taking an

A121 STM32CubelDE Acconeer SDK and integrate into - Using STM32CubelDE
STM32CubelDE.
. Describes how to develop for . . .
A121 Raspberry Pi Software Raspberry Pi. - Working with Raspberry Pi
. Describes how to develop for - Working with Ripple
A121 Ripple Ripple. on Raspberry Pi

A121 ESP32 User Guide

Describes how to develop with
A121 and ESP32 targets.

- Working with ESP32 targets

Describes how to develop for

XM125 Software XM125. - Working with XM 125
XM126 Software Describes how to develop for - Working with XM126
XM126.
. Describes the functionality of the - Working with the
12€ Distance Detector I2C Distance Detector Application. I2C Distance Detector Application
2C Presence Detector Describes the functionality of the - Working with the
12C Presence Detector Application. 12C Presence Detector Application
. . Describes the functionality of the - Working with the
12C Breathing Reference Application 12C Breathing Reference Application. 12C Breathing Reference Application
Describes the functionality of the - Working with the

12C Cargo Example Application

12C Cargo Example Application.

12C Cargo Example Application

A121 Radar Data and Control (PDF)

A121 Radar Data and Control

Describes different aspects of the
Acconeer offer, for example radar
principles and how to configure

- To understand the Acconeer sensor
- Use case evaluation

Readme (txt)

README

Various target specific information
and links

- After SDK download

© 2025 by Acconeer AB - All rights reserved

Page 3 of 22

(0
(XM125 I2C Ref App Breathing

© 2025 by Acconeer AB - All rights reserved Page 4 of 22

XM1251>C Ref App Breathing

2 I12C Ref App Breathing

The I>C Ref App Breathing is an application that implements the Acconeer Ref App Breathing with a register based I?C
interface.

The functionality of the ref app breathing is described in AI21 Breathing Reference Application User Guide.pdf or in
Acconeer Docs.

Note: Some of the registers like start and end have a different unit in the I>C Ref App Breathing, millimeters instead of
meters, to make it easier to handle the register values as integers.

2.1 I12C Address Configuration

The device has a configurable I’C address. The address is selected depending on the state of the IZ2C_ADDR pin according
to the following table:

Connected to GND | 0x51
Not Connected 0x52
Connected to VIN 0x53

2.2 12C Speed
The device supports I12C speed up to 100kbps in Standard Mode and up to 400kbps in Fast Mode.

2.3 Usage

The module must be ready before the host starts I>’C communication.

The module will enter ready state by following this procedure.
* Set WAKE_UP pin of the module HIGH.
* Wait for module to be ready, this is indicated by the MCU_INT pin being HIGH.
» Start I>’C communication.

The module will enter a low power state by following this procedure.
* Wait for module to be ready, this is indicated by the MCU_INT pin being HIGH.
* Set the WAKE_UP pin of the module LOW.
* Wait for ready signal, the MCU_INT pin, to become LOW.

2.3.1 Read App Status

The status of the module can be acquired by reading the App Status register, The most important bits are the Busy and
Error bits.

The Busy bit must not be set when a new command is written. If any of the Error bits are set the module will not accept
any commands except the RESET_MODULE command.

2.3.2 Writing a command

A command is written to the Command register. When a command is written the Busy bit in the App Status register is set
and it will be cleared automatically when the command has finished.

2.3.3 Setup and Start Application

Before the module can perform breathing detection it must be configured. The following steps is an example of how this
can be achieved.

Note: The configuration parameters can not be changed after a APPLY_CONFIGURATION command. If
reconfiguration is needed the module must be restarted by writing RESET_MODULE to the Command register.

* Power on module
» Read App Status register and verify that neither Busy nor Error bits are set.

* Write configuration to configuration registers, for example Start register and End register.

© 2025 by Acconeer AB - All rights reserved Page 5 of 22

https://docs.acconeer.com/en/latest/exploration_tool/algo/a121/ref_apps/breathing.html

XM1251>C Ref App Breathing

Write APPLY_CONFIGURATION to Command register.

Poll App Status until Busy bit is cleared.
* Verify that no Error bits are set in the App Status register.
Write START_APP to Command register.

* Poll App Status until Busy bit is cleared.
* Verify that no Error bits are set in the App Status register.
* Read App Result register
— If RESULT_READY is set a new breathing result is provided.
— If APP_ERROR is set an error has occurred, restart module with the RESET_MODULE command.
— If result was ready, the breathing rate can be read in the Breathing Rate register. In any state the app state can
be read in the App State register.
2.3.4 Stop and Restart Application
The application can be stopped and restarted.
The following steps is an example of how to stop the application.
* Read App Status register and verify that neither Busy nor Error bits are set.
* Write STOP_APP to Command register.
 Poll App Status until Busy bit is cleared.
* Verify that no Error bits are set in the App Status register.
The following steps is an example of how to re-start the application.
* Read App Status register and verify that neither Busy nor Error bits are set.
* Write START_APP to Command register.
* Poll App Status until Busy bit is cleared.

 Verify that no Error bits are set in the App Status register.

2.4 Advanced Usage
2.4.1 Debug UART logs

UART logging can be enabled on the DEBUG UART by writing ENABLE UART_LOGS to the Command
register.

The application configuration can be logged on the UART by writing LOG_CONFIGURATION to the Command
register.

UART logging can be disabled by writing DISABLE_UART _LOGS to the Command register.

2.4.2 Reset Module
The module can be restarted by writing RESET_MODULE to the Command register.

After the restart the application must be configured again.

© 2025 by Acconeer AB - All rights reserved Page 6 of 22

XM1251>C Ref App Breathing

3 Register Protocol

3.1 I2C Slave Address
The default slave address is 0x52.

3.2 Protocol Byte Order

Both register address, 16-bit, and register data, 32-bit, are sent in big endian byte order.

3.2.1 I2C Write Register(s)

A write register operation consists of an I?C write of two address bytes and four data bytes for each register to write.
Several registers can be written in the same I>C transaction, the register address will be incremented by one for each four
data bytes.

Example 1: Writing six bytes will write one register, two address bytes and four data bytes.
Example 2: Writing 18 bytes will write four registers, two address bytes and 16 data bytes.
Example operation, write 0x11223344 to address 0x0025.

Description Data
I2C Start Condition
Slave Address + Write | 0x52 + W
Address to slave [15:8] | 0x00
Address to slave [7:0] 0x25
Data to slave [31:24] 0x11
Data to slave [23:16] 0x22

Data to slave [15:8] 0x33
Data to slave [7:0] 0x44
I>C Stop Condition

Example Waveform: Write register with address 0x0100, the data sent from the master to the slave is 0x00000001

3.2.2 I2C Read Register(s)

A read register operation consists of an I>C write of two address bytes followed by an IC read of four data bytes for each
register to read. Several registers can be read in the same I>C transaction, the register address will be incremented by one
for each four data bytes.

Example 1: Writing two bytes and reading four bytes will read one register.

© 2025 by Acconeer AB - All rights reserved Page 7 of 22

XM1251>C Ref App Breathing

Example 2: Writing two bytes and reading 16 bytes will read four registers.
Example operation, read 0x12345678 from address 0x0003.

Description Data
I2C Start Condition
Slave Address + Write 0x52 + W
Address to slave [15:8] | 0x00
Address to slave [7:0] 0x03
I2C Stop Condition
IC Start Condition
Slave Address + Read 0x52 +R
Data from slave [31:24] | 0x12
Data from slave [23:16] | 0x34
Data from slave [15:8] 0x56
Data from slave [7:0] 0x78
I>C Stop Condition

Example Waveform: Read register with address 0, the data sent from the slave to the master is 0x00010001

© 2025 by Acconeer AB - All rights reserved Page 8 of 22

XM1251>C Ref App Breathing

3.3 Register Protocol - Low Power Mode

3.3.1 12C Communication with Low Power Mode

Low power example

o . | bmman

WAKEUP

03 MCU_INT (READY)

Low Power Example: Magnification of Wake up, Setup Ref App Breathing, Power down

© 2025 by Acconeer AB - All rights reserved Page 9 of 22

XM1251>C Ref App Breathing

4 File Structure
The I>C Ref App Breathing application consists of the following files.

| Src
| applications
i2c

acc_reg_protocol.c
ref_app_breathing reg protocol_access.c
ref_app_breathing reg protocol.c
i2c_application_system_stm32.c
i2c_ref_app_breathing.c

| _use_cases

L reference_apps

L ref_app_breathing.c

. Inc

acc_reg _protocol.h
ref_app_breathing reg protocol.h
i2c_application_system.h
i2c_ref_app_breathing.h

* acc_reg_protocol.c A generic protocol handler implementation.
« ref_app_breathing_reg_protocol.c The specific register protocol setup for the I’C Ref App Breathing.

« ref_app_breathing_reg_protocol_access.c The register read and write access functions for the I>C Ref App
Breathing.

« i2c_application_system_stm32.c System functions, such as I>C handling, GPIO control and low power state
* i2c_ref_app_breathing.c The I’C Ref App Breathing application.
* ref_app_breathing.c The Ref App Breathing application.

5 Embedded Host Example
This is an example implementation of the host read and write register functions using the STM32 SDK.

5.1 Register Read/Write functions

#include <inttypes.h>
#include <stdbool.h>
#include <stdint.h>

#include "ref_app_breathing_reg_protocol.h"

// Use 1000ms timeout
#define I2C_TIMEOUT_MS 1000

// The STM32 uses the %12c address shifted one position
// to the left (0z52 becomes Ozai)
#define I2C_ADDR Oxa4

// The register address length %s two bytes
#define REG_ADDRESS_LENGTH 2

// The register data length is four bytes
#define REG_DATA_LENGTH 4

/%
* Q@brief Read register wvalue over I2C
*

© 2025 by Acconeer AB - All rights reserved Page 10 of 22

XM125 I’C Ref App Breathing

* @param[in] reg_addr The register address to read
* @param[out] reg_data The read register data
* @returns true t1f successful
*/
bool read_register (uintl6_t reg_addr, uint32_t *reg_data)
{
HAL_StatusTypeDef status = HAL_0OK;

uint8_t transmit_data [REG_ADDRESS_LENGTH];

transmit_data [0]
transmit_data[1]

(reg_addr >> 8) & Oxff;
(reg_addr >> 0) & Oxff;

status = HAL_I2C_Master_Transmit (&STM32_I2C_HANDLE, I2C_ADDR,

transmit_data, REG_ADDRESS_LENGTH,

I2C_TIMEOUT_MS) ;
if (status != HAL_OK)
{

return false;

+
uint8_t receive_data[REG_DATA_LENGTH];

status = HAL_I2C_Master_Receive (&STM32_I2C_HANDLE, I2C_ADDR,

receive_data, REG_DATA_LENGTH,

I2C_TIMEOUT_MS);
if (status != HAL_O0OK)
{
return false;

}

// Convert bytes to wuwint32_t

uint32_t val = receive_datal[0];
val = val << 8;

val |= receive_datal[1l];

val = val << 8;

val |= receive_datal[2];

val = val << 8;

val |= receive_data[3];
*reg_data = val;

return true;

/**
* Q@brief Write register wvalue over I2C
*

* @param[in] reg_addr The register address to write
* @param[in] reg_data The register data to write
* @returns true 1f successful
*/
bool write_register (uintl6_t reg_addr, uint32_t reg_data)
{
HAL_StatusTypeDef status = HAL_O0OK;

uint8_t transmit_data[REG_ADDRESS_LENGTH + REG_DATA_LENGTH];

// Convert wuintl6_t address to bytes
transmit_data[0] = (reg_addr >> 8) & Oxff;

© 2025 by Acconeer AB - All rights reserved

Page 11 of 22

XM125 I’C Ref App Breathing

}

transmit_data[1] = (reg_addr >> 0) & Oxff;
// Convert wuint32_t reg_data to bytes
transmit_data [2] (reg_data >> 24) & Oxff;
transmit_data [3] (reg_data >> 16) & Oxff;
transmit_data [4] (reg_data >> 8) & Oxff;
transmit_data [5] (reg_data >> 0) & Oxff;

status = HAL_I2C_Master_Transmit (&STM32_I2C_HANDLE, I2C_ADDR,
transmit_data,
REG_ADDRESS_LENGTH + REG_DATA_LENGTH,
I2C_TIMEOUT_MS) ;
if (status != HAL_OK)
{
return false;

}

return true;

5.2 Application setup functions

#include "ref_app_breathing reg_protocol.h"

/% %

* @brief Test <f configuration of application is OK

*

* O@returns true t1f successful

*/

bool configuration_ok(void)

{

VAZ

i

{

uint32_t status = 0
if (!read_register (REF_APP_BREATHING_REG_APP_STATUS_ADDRESS, &status))
{

//ERROR

return false;

uint32_t config_ok_mask =
REF_APP_BREATHING_REG_APP_STATUS_FIELD_RSS_REGISTER_OK_MASK |
REF_APP_BREATHING_REG_APP_STATUS_FIELD_CONFIG_CREATE_OK_MASK |
REF_APP_BREATHING_REG_APP_STATUS_FIELD_SENSOR_CREATE_O0K_MASK |
REF_APP_BREATHING_REG_APP_STATUS_FIELD_SENSOR_CALIBRATE_OK_MASK |
REF_APP_BREATHING_REG_APP_STATUS_FIELD_APP_CREATE_0OK_MASK |
REF_APP_BREATHING_REG_APP_STATUS_FIELD_APP_BUFFER_OK_MASK |
REF_APP_BREATHING_REG_APP_STATUS_FIELD_SENSOR_BUFFER_OK_MASK |
REF_APP_BREATHING_REG_APP_STATUS_FIELD_CONFIG_APPLY_OK_MASK;

f (status != config_ok_mask)

//ERROR
return false;

return true;

* Q@brief Wait for application not busy

*

© 2025 by Acconeer AB - All rights reserved Page 12 of 22

XM125 I’C Ref App Breathing

* @returns true t1f successful

*/

bool wait_not_busy(void)

{

uint32_t status = 0

do
{

if (!read_register (REF_APP_BREATHING_REG_APP_STATUS_ADDRESS, &status

))
{
//ERROR
return false;
¥

} while((status & REF_APP_BREATHING_REG_APP_STATUS_FIELD_BUSY_MASK) !=

0);

return true;

bool example_setup_and_start(void)

{
/7
if
{

/7
if

//
if

/7
if

//
if

/7
if

Set start at 1000mm
(!write_register (REF_APP_BREATHING_REG_START_ADDRESS, 1000))

//ERROR
return false;

Set end at 5000mm
(!write_register (REF_APP_BREATHING_REG_END_ADDRESS, 5000))

//ERROR
return false;

Apply configuration

(lwrite_register (
REF_APP_BREATHING_REG_COMMAND_ADDRESS,
REF_APP_BREATHING_REG_COMMAND_ENUM_APPLY_CONFIGURATION))

//ERROR
return false;

Wait for the configuration to be done
('wait_not_busy ())

//ERROR
return false;

Test <f configration of application was UOK
(!configuration_ok())

//ERROR
return false;

Start application
(!write_register (REF_APP_BREATHING_REG_COMMAND_ADDRESS,
REF_APP_BREATHING_REG_COMMAND_ENUM_START_APP))

© 2025 by Acconeer AB - All rights reserved Page 13 of 22

XAA]ZSIZC‘Reprpl%euﬂﬂng

//ERROR
return false;

}

// Wait for command be done
if (!'wait_not_busy())
{

//ERROR

return false;

}

// Read application result
uint32_t result;
if (!read_register (REF_APP_BREATHING_REG_BREATHING_RESULT_ADDRESS, &

result))
{
//ERROR
return false;
}

// Was result ready?

bool result_ready = (result &
REF_APP_BREATHING_REG_BREATHING_RESULT_FIELD_RESULT_READY_MASK) != 0;

// Print peak if found
if (result_ready)

{
uint32_t breathing_rate;
if (read_register (REF_APP_BREATHING_REG_BREATHING_RATE_ADDRESS, &
breathing_rate))
{
printf ("Breathing rate: %" PRIu32 " bpm\n", breathing_rate);
}
else
{
//ERROR
return false;
}
}

return true;

© 2025 by Acconeer AB - All rights reserved Page 14 of 22

/,
([,
(O
\

XM125 I2C Ref App Breathing

6 Registers

6.1 Register Map

Address | Register Name Type
0x0000 | Version Read Only
0x0001 Protocol Status Read Only
0x0002 | Measure Counter Read Only
0x0003 | App Status Read Only
0x0010 | Breathing Result Read Only
0x0011 Breathing Rate Read Only
0x0012 | App State Read Only
0x0040 Start Read / Write
0x0041 End Read / Write
0x0042 | Num Distances To Analyze Read / Write
0x0043 Distance Determination Duration S | Read / Write
0x0044 | Use Presence Processor Read / Write
0x0045 | Lowest Breathing Rate Read / Write
0x0046 | Highest Breathing Rate Read / Write
0x0047 | Time Series Length S Read / Write
0x0048 | Frame Rate Read / Write
0x0049 | Sweeps Per Frame Read / Write
0x004a Hwaas Read / Write
0x004b Profile Read / Write
0x004c Intra Detection Threshold Read / Write
0x0100 | Command Write Only
Oxffff Application Id Read Only

6.2 Register Descriptions

6.2.1 Version
Address 0x0000
Access Read Only
Register Type field
Description Get the RSS version.
Bitfield | Pos | Width | Mask
MAIJOR | 16 16 0xffff0000
MINOR | 8 8 0x0000£f00
PATCH | 0 8 0x000000ff

MAJOR - Major version number

MINOR - Minor version number

PATCH - Patch version number

6.2.2 Protocol Status
Address 0x0001
Access Read Only
Register Type field
Description Get protocol error flags.
Bitfield Pos | Width | Mask
PROTOCOL_STATE_ERROR | 0 1 0x00000001

© 2025 by Acconeer AB - All rights reserved

Page 15 of 22

XM125 I2C Ref App Breathing

PACKET_LENGTH_ERROR | 1 1 0x00000002
ADDRESS_ERROR 2 1 0x00000004
WRITE_FAILED 3 1 0x00000008
WRITE_TO_READ_ONLY 4 1 0x00000010

PROTOCOL_STATE_ERROR - Protocol state error
PACKET_LENGTH_ERROR - Packet length error
ADDRESS_ERROR - Register address error
WRITE_FAILED - Write register failed

WRITE_TO_READ_ONLY - Write to read only register

6.2.3 Measure Counter

Address 0x0002

Access Read Only

Register Type uint

Description Get the measure counter, the number of measurements performed since restart.

6.2.4 App Status

Address 0x0003

Access Read Only

Register Type field

Description Get application status flags.

Bitfield Pos | Width | Mask
RSS_REGISTER_OK 0 1 0x00000001
CONFIG_CREATE_OK 1 1 0x00000002
SENSOR_CREATE_OK 2 1 0x00000004
SENSOR_CALIBRATE_OK 3 1 0x00000008
APP_CREATE_OK 4 1 0x00000010
APP_BUFFER_OK 5 1 0x00000020
SENSOR_BUFFER_OK 6 1 0x00000040
CONFIG_APPLY _OK 7 1 0x00000080
RSS_REGISTER_ERROR 16 |1 0x00010000
CONFIG_CREATE_ERROR 17 |1 0x00020000
SENSOR_CREATE_ERROR 18 |1 0x00040000
SENSOR_CALIBRATE_ERROR | 19 | 1 0x00080000
APP_CREATE_ERROR 20 1 0x00100000
APP_BUFFER_ERROR 21 1 0x00200000
SENSOR_BUFFER_ERROR 22 1 0x00400000
CONFIG_APPLY_ERROR 23 |1 0x00800000
APP_ERROR 28 |1 0x10000000
BUSY 31 1 0x80000000

RSS_REGISTER_OK - RSS register OK
CONFIG_CREATE _OK - Configuration create OK
SENSOR_CREATE_OK - Sensor create OK
SENSOR_CALIBRATE _OK - Sensor calibrate OK
APP_CREATE_OK - Application create OK
APP_BUFFER_OK - Application get buffer size OK

© 2025 by Acconeer AB - All rights reserved

Page 16 of 22

XM125 I2C Ref App Breathing

SENSOR_BUFFER_OK - Memory allocation of buffer OK
CONFIG_APPLY _OK - Application configuration apply OK
RSS_REGISTER_ERROR - RSS register error
CONFIG_CREATE_ERROR - Configuration create error
SENSOR_CREATE_ERROR - Sensor create error
SENSOR_CALIBRATE_ERROR - Sensor calibrate error
APP_CREATE_ERROR - Application create error
APP_BUFFER_ERROR - Application get buffer size error
SENSOR_BUFFER_ERROR - Memory allocation of sensor buffer error
CONFIG_APPLY_ERROR - Application configuration apply error
APP_ERROR - Application error occured, restart necessary

BUSY - Application busy

6.2.5 Breathing Result

RESULT_READY - Indication when a new breathing rate result is produced

Address 0x0010

Access Read Only

Register Type field

Description The result from the breathing reference application.
Bitfield Pos | Width | Mask

RESULT_READY 0 1 0x00000001
RESULT_READY _STICKY | 1 1 0x00000002
TEMPERATURE 16 | 16 0xffff0000

RESULT_READY_STICKY - Indication when a new breathing rate result is produced, sticky bit with clear on

read

TEMPERATURE - Temperature in sensor during measurement (in degree Celsius). Note that it has poor absolute

accuracy and should only be used for relative temperature measurements.

6.2.6 Breathing Rate

Address 0x0011

Access Read Only

Register Type uint

Unit bpm

Description The breathing rate. 0 if no breathing rate available. Note: This value is a factor 1000
larger than the RSS value.

6.2.7 App State

Address 0x0012

Access Read Only

Register Type enum

Description The current state of the application.
Enum Value

INIT 0

© 2025 by Acconeer AB - All rights reserved

Page 17 of 22

XM125 I2C Ref App Breathing

NO_PRESENCE 1
INTRA_PRESENCE 2
DETERMINE_DISTANCE 3
ESTIMATE_BREATHING_RATE | 4

INIT - Initiating

NO_PRESENCE - No presence detected
INTRA_PRESENCE - Too high intra presence detected
DETERMINE DISTANCE - Determine distance to presence
ESTIMATE _BREATHING _RATE - Estimate breathing rate

6.2.8 Start
Address 0x0040
Access Read / Write
Register Type uint
Unit mm
Description The start point of measurement interval in millimeters. Note: This value is a factor
1000 larger than the RSS value.
Default Value 300
6.2.9 End
Address 0x0041
Access Read / Write
Register Type uint
Unit mm
Description The end point of measurement interval in millimeters. Note: This value is a factor
1000 larger than the RSS value.
Default Value 1500

6.2.10 Num Distances To Analyze

Address 0x0042

Access Read / Write

Register Type uint

Description Number of distance points to analyze in breathing.
Default Value 3

6.2.11 Distance Determination Duration S

Address 0x0043

Access Read / Write

Register Type uint

Description Time to determine distance to presence in seconds.
Default Value 5

6.2.12 Use Presence Processor

Address 0x0044

Access Read / Write

Register Type bool

Description Use presence detector to determine distance to motion.

© 2025 by Acconeer AB - All rights reserved Page 18 of 22

/

([¢
((¢

XM125 I2C Ref App Breathing

| Default Value | True

6.2.13 Lowest Breathing Rate

Address 0x0045

Access Read / Write

Register Type uint

Description Lowest anticipated breathing rate in breaths per minute.
Default Value 6

6.2.14 Highest Breathing Rate

Address 0x0046

Access Read / Write

Register Type uint

Description Highest anticipated breathing rate in breaths per minute.
Default Value 60

6.2.15 Time Series Length S

Address 0x0047
Access Read / Write
Register Type uint
Description Length of time series in seconds.
Default Value 20
6.2.16 Frame Rate
Address 0x0048
Access Read / Write
Register Type uint
Unit mHz
Description The presence detector frame rate. Note: This value is a factor 1000 larger than the
RSS value.
Default Value 10000

6.2.17 Sweeps Per Frame

Address 0x0049
Access Read / Write
Register Type uint
Description The number of sweeps that will be captured in each frame (measurement).
Default Value 16
6.2.18 Hwaas
Address 0x004a
Access Read / Write
Register Type uint
Description The hardware accelerated average samples (HWAAS).
Default Value 32
6.2.19 Profile

© 2025 by Acconeer AB - All rights reserved

Page 19 of 22

XM125 I2C Ref App Breathing

Address 0x004b
Access Read / Write
Register Type enum
Description The profile to use.
Default Value PROFILE3
Enum Value

PROFILE1 | 1

PROFILE2 | 2

PROFILE3 | 3

PROFILE4 | 4

PROFILES | 5

PROFILEI] - Profile 1
PROFILE2 - Profile 2
PROFILES3 - Profile 3
PROFILEA4 - Profile 4
PROFILES - Profile 5

6.2.20 Intra Detection Threshold

Address 0x004c

Access Read / Write

Register Type uint

Description The threshold for detecting faster movements inside frames. Note: This value is a
factor 1000 larger than the RSS value.

Default Value 6000

6.2.21 Command

Address 0x0100

Access Write Only
Register Type enum

Description Execute command.
Enum Value
APPLY_CONFIGURATION | 1
START_APP 2
STOP_APP 3
ENABLE_UART_LOGS 32
DISABLE_UART_LOGS 33
LOG_CONFIGURATION 34
RESET_MODULE 1381192737

APPLY _CONFIGURATION - Apply the configuration

START _APP - Start the breathing application

STOP_APP - Stop the breathing application

ENABLE_UART_LOGS - DEBUG: Enable UART Logs

DISABLE _UART_LOGS - DEBUG: Disable UART Logs
LOG_CONFIGURATION - DEBUG: Print application configuration to UART

© 2025 by Acconeer AB - All rights reserved

Page 20 of 22

XM125 I2C Ref App Breathing

RESET_MODULE - Reset module, needed to make a new configuration

6.2.22 Application Id

Address Oxftff

Access Read Only

Register Type enum

Description The application id register.
Enum Value

DISTANCE_DETECTOR | 1

PRESENCE_DETECTOR

2
REF_APP_BREATHING 3
EXAMPLE_CARGO 4

DISTANCE _DETECTOR - Distance Detector Application
PRESENCE _DETECTOR - Presence Detector Application
REF_APP_BREATHING - Breathing Reference Application
EXAMPLE_CARGO - Cargo Example Application

© 2025 by Acconeer AB - All rights reserved

Page 21 of 22

(o
< XM125 I°C Ref App Breathing

7 Disclaimer

The information herein is believed to be correct as of the date issued. Acconeer AB (“Acconeer”) will not be responsible
for damages of any nature resulting from the use or reliance upon the information contained herein. Acconeer makes no
warranties, expressed or implied, of merchantability or fitness for a particular purpose or course of performance or usage
of trade. Therefore, it is the user’s responsibility to thoroughly test the product in their particular application to
determine its performance, efficacy and safety. Users should obtain the latest relevant information before placing orders.

Unless Acconeer has explicitly designated an individual Acconeer product as meeting the requirement of a particular
industry standard, Acconeer is not responsible for any failure to meet such industry standard requirements.

Unless explicitly stated herein this document Acconeer has not performed any regulatory conformity test. It is the user’s
responsibility to assure that necessary regulatory conditions are met and approvals have been obtained when using the
product. Regardless of whether the product has passed any conformity test, this document does not constitute any
regulatory approval of the user’s product or application using Acconeer’s product.

Nothing contained herein is to be considered as permission or a recommendation to infringe any patent or any other
intellectual property right. No license, express or implied, to any intellectual property right is granted by Acconeer

herein.

Acconeer reserves the right to at any time correct, change, amend, enhance, modify, and improve this document and/or
Acconeer products without notice.

This document supersedes and replaces all information supplied prior to the publication hereof.

a((oneer

© 2025 by Acconeer AB - All rights reserved Page 22 of 22

	Acconeer SDK Documentation Overview
	I2C Ref App Breathing
	I2C Address Configuration
	I2C Speed
	Usage
	Read App Status
	Writing a command
	Setup and Start Application
	Stop and Restart Application

	Advanced Usage
	Debug UART logs
	Reset Module

	Register Protocol
	I2C Slave Address
	Protocol Byte Order
	I2C Write Register(s)
	I2C Read Register(s)

	Register Protocol - Low Power Mode
	I2C Communication with Low Power Mode

	File Structure
	Embedded Host Example
	Register Read/Write functions
	Application setup functions

	Registers
	Register Map
	Register Descriptions
	Version
	Protocol Status
	Measure Counter
	App Status
	Breathing Result
	Breathing Rate
	App State
	Start
	End
	Num Distances To Analyze
	Distance Determination Duration S
	Use Presence Processor
	Lowest Breathing Rate
	Highest Breathing Rate
	Time Series Length S
	Frame Rate
	Sweeps Per Frame
	Hwaas
	Profile
	Intra Detection Threshold
	Command
	Application Id

	Disclaimer

