a((oneer

XM125 I°C Cargo Example Application

User Guide

(o
(XM125 12C Cargo Example Application

XM125 12C Cargo Example Application
User Guide

Author: Acconeer AB
Version:al21-v1.12.0

Acconeer AB October 15, 2025

© 2025 by Acconeer AB - All rights reserved Page 1 of 22

XM 125 I>C Cargo Example Application

Contents

1 Acconeer SDK Documentation Overview 3
2 I2C Cargo Example Application 5
2.1 TIPC Address Configuration 5
22 T2CSpeed e e e e e 5

2.3 USAZE . . o v e e e e 5
23.1 Read App Status e e e 5

232 Writingacommand e e e 5

2.3.3 Setup and Start Application L. e 5

24 Advanced Usage 6
24.1 Debug UART logs o o e e e e e e e 6

242 ResetModule e e 6

3 Register Protocol 7
3.0 PCSlave Address oo oo 7
3.2 Protocol Byte Order 7
32,1 TPCWrite ReiStEI(S) . « « o o v v v o o e e e e e e e e 7

322 TPCRead Re@iSer(S) . . « o v v v v v o e e e e e e e 7

3.3 Register Protocol - Low Power Mode 9
3.3.1 I?C Communication with Low Power Mode i 9

4 File Structure 10
5 Embedded Host Example 10
5.1 Register Read/Write functions L 10
5.2 Application setup functionsl e 12

6 Registers 15
6.1 Register Map 15
6.2 Register Descriptions 15
6.2.1 VerSION o i e e e e e e e e 15

6.2.2 Protocol Status e e e 15

6.2.3 Measure COUNET o v it i e e e e e e e e e e e e e e e e e e e 16

6.2.4 Actual Presence Update Rate 16

6.2.5 Application Status e 16

6.2.6 Container SIZ€ e e e e e e e e e e e e e e 17

6.2.7 Activate Utilization Level 17

6.2.8 Utilization Signal Quality L 17

6.2.9 Utilization Threshold Sensitivity 17

6.2.10 Activate Presence e e e e e e e e 18

6.2.11 Presence Update Rate e 18

6.2.12 Presence Sweeps Per Frame 18

6.2.13 Presence Signal Quality 18

6.2.14 Presence Inter Detection Threshold, 18

6.2.15 Presence Intra Detection Threshold 18

6.2.16 ResultHeader e 19

6.2.17 Utilization Distance e e e e 19

6.2.18 Utilization Level Mm e e 19

6.2.19 Utilization Level Percent e 19

6.2.20 Presence Detected e e e e e 20

6.2.21 Max Inter Presence Scoreo 20

6.2.22 Max Intra Presence Score e e e 20

6.2.23 Command e e e e e e e e e 20

6.2.24 ApplicationId 20

7 Disclaimer 22
© 2025 by Acconeer AB - All rights reserved Page 2 of 22

XM 125 I>C Cargo Example Application

1 Acconeer SDK Documentation Overview

To better understand what SDK document to use, a summary of the documents are shown in the table below.

Table 1: SDK document overview.

Name | Description | When to use
RSS API documentation (html)
rss_api The complete C API documentation. - RSS application implementation

- Understanding RSS API functions

User guides (PDF)

A121 Assembly Test

Describes the Acconeer assembly
test functionality.

- Bring-up of HW/SW
- Production test implementation

A121 Breathing
Reference Application

Describes the functionality of the
Breathing Reference Application.

- Working with the Breathing
Reference Application

A121 Distance Detector

Describes usage and algorithms
of the Distance Detector.

- Working with the Distance Detector

A121 SW Integration

Describes how to implement each
integration function needed to use
the Acconeer sensor.

- SW implementation of
custom HW integration

A121 Presence Detector

Describes usage and algorithms
of the Presence Detector.

- Working with the Presence Detector

A121 Smart Presence
Reference Application

Describes the functionality of the
Smart Presence Reference Application.

- Working with the Smart Presence
Reference Application

A121 Sparse 1Q Service

Describes usage of the Sparse 1Q
Service.

- Working with the Sparse I1Q Service

A121 Tank Level
Reference Application

Describes the functionality of the
Tank Level Reference Application.

- Working with the Tank Level
Reference Application

A121 Touchless Button
Reference Application

Describes the functionality of the

Touchless Button Reference Application.

- Working with the Touchless Button
Reference Application

A121 Parking
Reference Application

Describes the functionality of the
Parking Reference Application.

- Working with the Parking
Reference Application

Describes the flow of taking an

A121 STM32CubelDE Acconeer SDK and integrate into - Using STM32CubelDE
STM32CubelDE.
. Describes how to develop for . . .
A121 Raspberry Pi Software Raspberry Pi. - Working with Raspberry Pi
. Describes how to develop for - Working with Ripple
A121 Ripple Ripple. on Raspberry Pi

A121 ESP32 User Guide

Describes how to develop with
A121 and ESP32 targets.

- Working with ESP32 targets

Describes how to develop for

XM125 Software XM125. - Working with XM 125
XM126 Software Describes how to develop for - Working with XM126
XM126.
. Describes the functionality of the - Working with the
12€ Distance Detector I2C Distance Detector Application. I2C Distance Detector Application
2C Presence Detector Describes the functionality of the - Working with the
12C Presence Detector Application. 12C Presence Detector Application
. . Describes the functionality of the - Working with the
12C Breathing Reference Application 12C Breathing Reference Application. 12C Breathing Reference Application
Describes the functionality of the - Working with the

12C Cargo Example Application

12C Cargo Example Application.

12C Cargo Example Application

A121 Radar Data and Control (PDF)

A121 Radar Data and Control

Describes different aspects of the
Acconeer offer, for example radar
principles and how to configure

- To understand the Acconeer sensor
- Use case evaluation

Readme (txt)

README

Various target specific information
and links

- After SDK download

© 2025 by Acconeer AB - All rights reserved

Page 3 of 22

(0
(XM125 I’C Cargo Example Application

© 2025 by Acconeer AB - All rights reserved Page 4 of 22

XM 125 I>C Cargo Example Application

2 I2C Cargo Example Application

The I>C Cargo Example Application is an application that implements the Acconeer Cargo Example Application with a
register-based IC interface.

The functionality of the Cargo Example Application is described in Acconeer Docs.

Note: Some of the registers have a different scale in the I>C Cargo Example Application. For example, millimeters can
used instead of meters. All such deviations are clearly marked in each register’s description. This is to make it easier to
handle the register values as integers.

2.1 I12C Address Configuration

The device has a configurable I’C address. The address is selected depending on the state of the IZ2C_ADDR pin according
to the following table:

Connected to GND | 0x51
Not Connected 0x52
Connected to VIN 0x53

2.2 12C Speed
The device supports I12C speed up to 100kbps in Standard Mode and up to 400kbps in Fast Mode.

2.3 Usage

The module must be ready before the host starts I>’C communication.

The module will enter ready state by following this procedure.
* Set WAKE_UP pin of the module HIGH.
* Wait for module to be ready, this is indicated by the MCU_INT pin being HIGH.
» Start I>’C communication.

The module will enter a low power state by following this procedure.
* Wait for module to be ready, this is indicated by the MCU_INT pin being HIGH.
* Set the WAKE_UP pin of the module LOW.
* Wait for ready signal, the MCU_INT pin, to become LOW.

2.3.1 Read App Status

The status of the module can be acquired by reading the App Status register, The most important bits are the Busy and
Error bits.

The Busy bit must not be set when a new command is written. If any of the Error bits are set the module will not accept
any commands except the RESET_MODULE command.

2.3.2 Writing a command

A command is written to the Command register. When a command is written the Busy bit in the App Status register is set
and it will be cleared automatically when the command has finished.

2.3.3 Setup and Start Application

Before the module can perform utilization-level measurements and/or presence measurements, it must be configured. The
following steps is an example of how this can be achieved.

Note: The configuration parameters can not be changed after a APPLY_CONFIGURATION command. If
reconfiguration is needed the module must be restarted by writing RESET_MODULE to the Command register.

1. Power on module
2. Read Application Status register and verify that neither Busy nor Error bits are set.

3. Write configuration to configuration registers, for example the Container size register.

© 2025 by Acconeer AB - All rights reserved Page 5 of 22

https://docs.acconeer.com/en/latest/example_apps/a121/cargo.html

XM 125 I>C Cargo Example Application

Write APPLY_CONFIGURATION to Command register.

Poll Application Status until Busy bit is cleared.

Verify that no Error bits are set in the Application Status register.

Write MEASURE_UTILIZATION_LEVEL (or MEASURE _PRESENCE) to Command register.

Poll Application Status until Busy bit is cleared.

o ® NN ok

Verify that no Error bits are set in the Application Status register.
10. Read Result Header register

o If UTILIZATION_LEVEL_VALID or PRESENCE_VALID is set a measurement of that kind has
successfully been made.

e If APP_ERROR is set an error has occurred, restart module with the RESET_MODULE command.

* Ifutilization level measurement was valid, details from the measurement can be read in the registers Utilization
Distance, Utilization Level (mm) & Utilization Level (%).

* If presence measurement was valid, details from the measurement can be read in the registers Presence
Detected, Max Inter Presence Score & Max Intra Presence Score.

11. Go to step 7. (Write command MEASURE_UTILIZATION_LEVEL or MEASURE_PRESENCE)

2.4 Advanced Usage
2.4.1 Debug UART logs

UART logging can be enabled on the DEBUG UART by writing ENABLE UART_LOGS to the Command
register.

The application configuration can be logged on the UART by writing LOG_CONFIGURATION to the Command
register.

UART logging can be disabled by writing DISABLE_UART_LOGS to the Command register.

2.4.2 Reset Module
The module can be restarted by writing RESET_MODULE to the Command register.

After the restart the application must be configured again.

© 2025 by Acconeer AB - All rights reserved Page 6 of 22

XM 125 I>C Cargo Example Application

3 Register Protocol

3.1 I2C Slave Address
The default slave address is 0x52.

3.2 Protocol Byte Order

Both register address, 16-bit, and register data, 32-bit, are sent in big endian byte order.

3.2.1 I2C Write Register(s)

A write register operation consists of an I?C write of two address bytes and four data bytes for each register to write.
Several registers can be written in the same I>C transaction, the register address will be incremented by one for each four
data bytes.

Example 1: Writing six bytes will write one register, two address bytes and four data bytes.
Example 2: Writing 18 bytes will write four registers, two address bytes and 16 data bytes.
Example operation, write 0x11223344 to address 0x0025.

Description Data
I2C Start Condition
Slave Address + Write | 0x52 + W
Address to slave [15:8] | 0x00
Address to slave [7:0] 0x25
Data to slave [31:24] 0x11
Data to slave [23:16] 0x22

Data to slave [15:8] 0x33
Data to slave [7:0] 0x44
I>C Stop Condition

Example Waveform: Write register with address 0x0100, the data sent from the master to the slave is 0x00000001

3.2.2 I2C Read Register(s)

A read register operation consists of an I>C write of two address bytes followed by an IC read of four data bytes for each
register to read. Several registers can be read in the same I>C transaction, the register address will be incremented by one
for each four data bytes.

Example 1: Writing two bytes and reading four bytes will read one register.

© 2025 by Acconeer AB - All rights reserved Page 7 of 22

XM 125 I>C Cargo Example Application

Example 2: Writing two bytes and reading 16 bytes will read four registers.
Example operation, read 0x12345678 from address 0x0003.

Description Data
I2C Start Condition
Slave Address + Write 0x52 + W
Address to slave [15:8] | 0x00
Address to slave [7:0] 0x03
I2C Stop Condition
IC Start Condition
Slave Address + Read 0x52 +R
Data from slave [31:24] | 0x12
Data from slave [23:16] | 0x34
Data from slave [15:8] 0x56
Data from slave [7:0] 0x78
I>C Stop Condition

Example Waveform: Read register with address 0, the data sent from the slave to the master is 0x00010001

© 2025 by Acconeer AB - All rights reserved Page 8 of 22

XM 125 I>C Cargo Example Application

3.3 Register Protocol - Low Power Mode

3.3.1 12C Communication with Low Power Mode

Low power example

b

WAKEUP

03 MCU_INT (READY)

Low Power Example: Magnification of Wake up, Setup, & Power down

© 2025 by Acconeer AB - All rights reserved Page 9 of 22

XM 125 I>C Cargo Example Application

4 File Structure

The I>C Cargo Example Application consists of the following files.

L,Src

| applications

i2c

| acc_reg protocol.c ... A generic protocol handler
implementation

| example_cargo_reg protocol.c ... The specific register

protocol setup for the IC
Cargo Example Application
| example_cargo_reg protocol_access.c ... The register read- and
write access functions
for the I2?C Cargo Example
Application
| i2c_application_system_stm32.c ... System functions, such as
I12C handling, GPIO control
and low power state
| _i2c_example_cargo.c ... The I?C Cargo Example
Application

| _use_cases
L,example,apps
example_cargo.c ... The Cargo Example
Application

| Inc

acc_reg _protocol.h
example_cargo.h
example_cargo_reg _protocol.h
i2c_application_system.h
i2c_example_cargo.h

5 Embedded Host Example

This is an example implementation of the host read and write register functions using the STM32 SDK.

5.1 Register Read/Write functions

#include <inttypes.h>
#include <stdbool.h>
#include <stdint.h>

#include "example cargo_reg_protocol.h"

// Use 1000ms timeout
#define I2C_TIMEOUT_MS 1000

// The STM32 uses the t2c address shifted one postition
// to the left (0z52 becomes Ozai)
#define I2C_ADDR Oxa4

// The register address length is two bytes
#define REG_ADDRESS_LENGTH 2

// The register data length %s four bytes
#define REG_DATA_LENGTH 4

/% %

* @brief Read register wvalue over I2C

© 2025 by Acconeer AB - All rights reserved Page 10 of 22

XM 125 I>C Cargo Example Application

@param[in] reg_addr The regtister address to read
@param[out] reg_data The read register data
@returns true 1f successful

* * ¥ *

*/
bool read_register (uintl6_t reg_addr, uint32_t *reg_data)

{
HAL_StatusTypeDef status = HAL_O0OK;

uint8_t transmit_data[REG_ADDRESS_LENGTH];

transmit_data [0]
transmit_data[1]

(reg_addr >> 8) & Oxff;
(reg_addr >> 0) & Oxff;

status = HAL_I2C_Master_Transmit (&STM32_I2C_HANDLE, I2C_ADDR,

transmit_data, REG_ADDRESS_LENGTH,

I2C_TIMEQUT_MS) ;
if (status != HAL_OK)
{

return false;
+
uint8_t receive_data[REG_DATA_LENGTH];

status = HAL_I2C_Master_Receive (& STM32_I2C_HANDLE, I2C_ADDR,

receive_data, REG_DATA_LENGTH,

I2C_TIMEOUT_MS) ;
if (status != HAL_OK)
{

return false;

}

// Convert bytes to uint32_t

uint32_t val = receive_datal[0];
val = val << 8;

val |= receive_datal[1];

val = val << 8;

val |= receive_datal[2];

val = val << 8;

val |= receive_data[3];
*reg_data = val;

return true;

/ k%

* Q@brief Write register wvalue over I2C

*

* @param[in] reg_addr The register address to write

* @param[in] reg_data The register data to write

*¥ @returns true 1f successful

*/
bool write_register (uintl6_t reg_addr, uint32_t reg_data)
{

HAL_StatusTypeDef status = HAL_O0OK;
uint8_t transmit_data [REG_ADDRESS_LENGTH + REG_DATA_LENGTH];

// Convert wuintl6_t address to bytes

© 2025 by Acconeer AB - All rights reserved

Page 11 of 22

XM 125 I>C Cargo Example Application

}

transmit_data [0] (reg_addr >> 8) & Oxff;
transmit_data[1] (reg_addr >> 0) & Oxff;
// Convert wuint32_t reg_data to bytes

transmit_data [2] (reg_data >> 24) & Oxff;
transmit_data [3] (reg_data >> 16) & Oxff;
transmit_data [4] (reg_data >> 8) & Oxff;
transmit_data [5] (reg_data >> 0) & Oxff;

status = HAL_I2C_Master_Transmit (&STM32_I2C_HANDLE, I2C_ADDR,
transmit_data,
REG_ADDRESS_LENGTH + REG_DATA_LENGTH,
I2C_TIMEQUT_MS) ;
if (status != HAL_OK)
{
return false;

}

return true;

5.2 Application setup functions

#include "example_cargo_reg_protocol.h"

/* *
* @brief Test i1f configuration of application s OK

* @returns true t1f successful

bool configuration_ok(void)

{

i

{

uint32_t status = 0

if (!'read_register (EXAMPLE_CARGO_REG_APPLICATION_STATUS_ADDRESS, &status
))

{
//ERROR
return false;

uint32_t config_ok_mask =
EXAMPLE_CARGO_REG_APPLICATION_STATUS_FIELD_RSS_REGISTER_OK_MASK |
EXAMPLE_CARGO_REG_APPLICATION_STATUS_FIELD_SENSOR_CREATE_OK_MASK |
EXAMPLE_CARGO_REG_APPLICATION_STATUS_FIELD_SENSOR_CALIBRATE_OK_MASK
|
EXAMPLE_CARGO_REG_APPLICATION_STATUS_FIELD_CARGO_CREATE_OK_MASK |
EXAMPLE_CARGO_REG_APPLICATION_STATUS_FIELD_CARGO_CALIBRATE_OK_MASK
I
EXAMPLE_CARGO_REG_APPLICATION_STATUS_FIELD_CARGO_BUFFER_OK_MASK |
EXAMPLE_CARGO_REG_APPLICATION_STATUS_FIELD_SENSOR_BUFFER_OK_MASK |
EXAMPLE_CARGO_REG_APPLICATION_STATUS_FIELD_CONFIG_APPLY_OK_MASK;

f (status != config_ok_mask)

//ERROR
return false;

return true;

© 2025 by Acconeer AB - All rights reserved Page 12 of 22

XM 125 I>C Cargo Example Application

VA

* @brief Wait for application not busy

*

* @returns true if successful

*/

bool wait_not_busy(void)

{

uint32_t status = 0

do
{

if (!read_register (EXAMPLE_CARGO_REG_APPLICATION_STATUS_ADDRESS, &

status))
{
//ERROR
return false;
}

} while((status & EXAMPLE_CARGO_REG_APPLICATION_STATUS_FIELD_BUSY_MASK)

1= 0);

return true;

bool example_setup_and_start(void)

{
//
if
{

/7
if

//
if

/7
if

/7
if

Set container size to 10ft
(twrite_register (EXAMPLE_CARGO_REG_CONTAINER_SIZE_ADDRESS, 10U))

//ERROR
return false;

Activate presence (default off)
(!write_register (EXAMPLE_CARGO_REG_ACTIVATE_PRESENCE_ADDRESS, 1U))

//ERROR
return false;

Apply configuration

(lwrite_register (
EXAMPLE_CARGO_REG_COMMAND_ADDRESS,
EXAMPLE_CARGO_REG_COMMAND _ENUM_APPLY_CONFIGURATION))

//ERROR
return false;

Wait for the configuration to be done
('wait_not_busy ())

//ERROR
return false;

Test <f configration of application was 0K
(!configuration_ok ())

//ERROR
return false;

© 2025 by Acconeer AB - All rights reserved Page 13 of 22

XM 125 I>C Cargo Example Application

// Perform a utilization measurement
if (!write_register (EXAMPLE_CARGO_REG_COMMAND_ADDRESS,
EXAMPLE_CARGO_REG_COMMAND_ENUM_MEASURE_UTILIZATION_LEVEL
))

//ERROR
return false;

}

// Wait for command be done
if (!'wait_not_busy())
{

//ERROR

return false;

}

// Read cargo result header
uint32_t result;
if (!read_register (EXAMPLE_CARGO_REG_RESULT_HEADER_ADDRESS, &result))
{
//ERROR
return false;

}

// Is utilization wvalid?

bool utilization_valid = (result &
EXAMPLE_CARGO_REG_RESULT_HEADER_FIELD_UTILIZATION_LEVEL_VALID_MASK)
= 0;

if (utilization_valid)

{
uint32_t utilization_distance_mm;
if (read_register (EXAMPLE_CARGO_REG_UTILIZATION_DISTANCE_ADDRESS, &
utilization_distance_mm))
{
printf ("Distance (utilization): %" PRIu32 " mm\n",
utilization_distance_mm) ;
+
else
{
//ERROR
return false;
}
}

return true;

© 2025 by Acconeer AB - All rights reserved Page 14 of 22

/,
([»
(O
\

XM125 1>C Cargo Example Application

6 Registers

6.1 Register Map

Address | Register Name Type
0x0000 | Version Read Only
0x0001 Protocol Status Read Only
0x0002 | Measure Counter Read Only
0x0003 | Actual Presence Update Rate Read Only
0x0004 | Application Status Read Only
0x0010 | Container Size Read / Write
0x0011 Activate Utilization Level Read / Write
0x0012 | Utilization Signal Quality Read / Write
0x0013 Utilization Threshold Sensitivity Read / Write
0x0014 | Activate Presence Read / Write
0x0015 Presence Update Rate Read / Write
0x0016 | Presence Sweeps Per Frame Read / Write
0x0017 | Presence Signal Quality Read / Write
0x0018 | Presence Inter Detection Threshold | Read / Write
0x0019 | Presence Intra Detection Threshold | Read / Write
0x0020 | Result Header Read Only
0x0021 Utilization Distance Read Only
0x0022 | Utilization Level Mm Read Only
0x0023 Utilization Level Percent Read Only
0x0024 | Presence Detected Read Only
0x0025 Max Inter Presence Score Read Only
0x0026 | Max Intra Presence Score Read Only
0x0030 | Command Write Only
Oxfftf Application Id Read Only

6.2 Register Descriptions

6.2.1 Version
Address 0x0000
Access Read Only
Register Type field
Description Get the RSS version.
Bitfield | Pos | Width | Mask
MAIJOR | 16 | 16 0xffff0000
MINOR | 8 8 0x0000£f00
PATCH | 0O 8 0x000000ff

MAJOR - Major version number
MINOR - Minor version number
PATCH - Patch version number

6.2.2 Protocol Status

Address 0x0001

Access Read Only

Register Type field

Description Get protocol error flags.

© 2025 by Acconeer AB - All rights reserved

Page 15 of 22

XM 125 I>C Cargo Example Application

Bitfield Pos | Width | Mask

PROTOCOL_STATE_ERROR | 0 1 0x00000001
PACKET_LENGTH_ERROR 1 1 0x00000002
ADDRESS_ERROR 2 1 0x00000004
WRITE_FAILED 3 1 0x00000008
WRITE_TO_READ_ONLY 4 1 0x00000010

PROTOCOL_STATE_ERROR - Protocol state error
PACKET_LENGTH_ERROR - Packet length error

ADDRESS_ERROR - Register address error
WRITE_FAILED - Write register failed

WRITE_TO_READ_ONLY - Write to read only register

6.2.3 Measure Counter

Address 0x0002

Access Read Only

Register Type uint

Description Get the measure counter, the number of measurements performed since restart.

6.2.4 Actual Presence Update Rate

Address 0x0003

Access Read Only

Register Type uint

Unit mHz

Description Get the actual update rate (frame rate) of presence during a burst

6.2.5 Application Status

Address 0x0004

Access Read Only

Register Type field

Description Get example app status flags.

Bitfield Pos | Width | Mask
RSS_REGISTER_OK 0 1 0x00000001
SENSOR_CREATE_OK 1 1 0x00000002
SENSOR_CALIBRATE_OK 2 1 0x00000004
CARGO_CREATE_OK 3 1 0x00000008
CARGO_CALIBRATE_OK 4 1 0x00000010
SENSOR_BUFFER_OK 5 1 0x00000020
CARGO_BUFFER_OK 6 1 0x00000040
CONFIG_APPLY _OK 7 1 0x00000080
RSS_REGISTER_ERROR 8 1 0x00000100
SENSOR_CREATE_ERROR 10 |1 0x00000400
SENSOR_CALIBRATE_ERROR | 11 1 0x00000800
CARGO_CREATE_ERROR 12 |1 0x00001000
CARGO_CALIBRATE_ERROR 13 1 0x00002000
SENSOR_BUFFER_ERROR 14 |1 0x00004000
CARGO_BUFFER_ERROR 15 1 0x00008000
CONFIG_APPLY _ERROR 16 |1 0x00010000
APPLICATION_ERROR 17 |1 0x00020000

© 2025 by Acconeer AB - All rights reserved

Page 16 of 22

XM 125 I>C Cargo Example Application

[BUSY (18 [1 [000040000 |

RSS_REGISTER_OK - RSS register OK

SENSOR_CREATE _OK - Sensor create OK
SENSOR_CALIBRATE_OK - Sensor calibrate OK
CARGO_CREATE _OK - Cargo create OK
CARGO_CALIBRATE_OK - Cargo calibrate OK
SENSOR_BUFFER_OK - Memory allocation of sensor buffer OK
CARGO_BUFFER _OK - Memory allocation of cargo buffer OK
CONFIG_APPLY _OK - Cargo configuration apply OK
RSS_REGISTER_ERROR - RSS register error
SENSOR_CREATE_ERROR - Sensor create error
SENSOR_CALIBRATE_ERROR - Sensor calibrate error
CARGO_CREATE_ERROR - Cargo create error
CARGO_CALIBRATE_ERROR - Cargo calibrate error
SENSOR_BUFFER_ERROR - Memory allocation of sensor buffer error
CARGO_BUFFER_ERROR - Memory allocation of cargo buffer error
CONFIG_APPLY_ERROR - Cargo configuration apply error
APPLICATION_ERROR - Application error occured, restart necessary
BUSY - Cargo busy

6.2.6 Container Size

Address 0x0010

Access Read / Write

Register Type uint

Description Size of the container. Valid values to write are 10U, 20U and 40U.

6.2.7 Activate Utilization Level

Address 0x0011

Access Read / Write

Register Type bool

Description Whether to activate utilization level measurements. The command
MEASURE_UTILIZATION_LEVEL cannot succeed if this register if false.

6.2.8 Utilization Signal Quality

Address 0x0012

Access Read / Write

Register Type uint

Description Signal quality. This register is x1000 compared to the Cargo Example Application.
For more information, see documentation about the Distance Detectors signal quality
parameter.

6.2.9 Utilization Threshold Sensitivity

© 2025 by Acconeer AB - All rights reserved Page 17 of 22

XM 125 I>C Cargo Example Application

Address 0x0013

Access Read / Write

Register Type uint

Description Threshold sensitivity. This register is x1000 compared to the Cargo Example

Application. For more information, see documentation about the Distance Detectors
threshold sensitivity parameter.

6.2.10 Activate Presence

Address 0x0014

Access Read / Write

Register Type bool

Description Whether to activate presence measurements. The command MEASURE_PRESENCE
cannot succeed if this register if false.

6.2.11 Presence Update Rate

Address 0x0015

Access Read / Write

Register Type uint

Unit mHz

Description The presence detector update rate (frame rate). This register is x1000 compared to
the Cargo Example Application. For more information, see documentation about the
Presence Detectors frame rate parameter.

6.2.12 Presence Sweeps Per Frame

Address 0x0016

Access Read / Write

Register Type uint

Description The number of sweeps that will be captured in each frame (measurement). For
more information, see documentation about the Presence Detectors sweeps_per_frame
parameter.

6.2.13 Presence Signal Quality

Address 0x0017

Access Read / Write

Register Type uint

Description Signal quality. This register is x1000 compared to the Cargo Example Application.
For more information, see documentation about the Presence Detectors signal quality
parameter.

6.2.14 Presence Inter Detection Threshold

Address 0x0018

Access Read / Write

Register Type uint

Description This is the threshold for detecting slower movements between frames. This register
is x1000 compared to the Cargo Example Application. For more information, see
documentation about the Presence Detectors inter detection threshold parameter.

6.2.15 Presence Intra Detection Threshold

© 2025 by Acconeer AB - All rights reserved

Page 18 of 22

XM 125 I>C Cargo Example Application

Address 0x0019

Access Read / Write

Register Type uint

Description This is the threshold for detecting faster movements between frames. This register
is x1000 compared to the Cargo Example Application. For more information, see
documentation about the Presence Detectors intra detection threshold parameter.

6.2.16 Result Header

Address 0x0020

Access Read Only

Register Type field

Description The result header for the cargo result.
Bitfield Pos | Width | Mask
TEMPERATURE 0 16 0x0000ffft
UTILIZATION_LEVEL_VALID | 17 | 1 0x00020000
PRESENCE_VALID 18 |1 0x00040000

TEMPERATURE - Temperature in sensor (in degree Celsius) during the most recent measurement (presence/utilization).

Note that it has poor absolute accuracy and should only be used for relative temperature measurements.

UTILIZATION_LEVEL_VALID - Whether utilization level results are valid. Utilization level results are found in the

registers utilization_distance, utilization_level_ mm and utilization_level_percent.

PRESENCE_VALID - Whether presence level results are valid.

presence_detected, inter_presence_score and intra_presence_score.

6.2.17 Utilization Distance

Address 0x0021

Access Read Only

Register Type uint

Unit mm

Description The distance, in millimeters, to the detection.

6.2.18 Utilization Level Mm

Address 0x0022

Access Read Only

Register Type uint

Unit mm

Description The fill level in millimeters. Fill level is the distance from the detection to the back of
the container.

6.2.19 Utilization Level Percent

Address 0x0023

Access Read Only

Register Type uint

Unit %

Description The fill level in percent. Fill level is the distance from the detection to the back of the

container.

© 2025 by Acconeer AB - All rights reserved

Presence results are found in the registers

Page 19 of 22

XM 125 I>C Cargo Example Application

6.2.20 Presence Detected

Address 0x0024

Access Read Only

Register Type bool

Description Whether presence was detected during the 5s presence burst

6.2.21 Max Inter Presence Score

Address 0x0025

Access Read Only

Register Type uint

Description Inter presence score is a measure of the amount of slow motion detected. This register
contains the maximum inter presence score during the 5s presence burst.

6.2.22 Max Intra Presence Score

Address 0x0026

Access Read Only

Register Type uint

Description Intra presence score is measure of the amount of slow motion detected. This register
contains the maximum intra presence score during the 5s presence burst.

6.2.23 Command

Address 0x0030

Access Write Only

Register Type enum

Description Execute command.
Enum Value
APPLY_CONFIGURATION 1
MEASURE_UTILIZATION_LEVEL | 4
MEASURE_PRESENCE 5
ENABLE_UART_LOGS 32
DISABLE_UART_LOGS 33
LOG_CONFIGURATION 34
RESET_MODULE 1381192737

APPLY_CONFIGURATION - Apply the configuration
MEASURE_UTILIZATION_LEVEL - Do one utilization level measurement
MEASURE_PRESENCE - Do one 5s burst of presence measurements
ENABLE_UART_LOGS - DEBUG: Enable UART Logs
DISABLE_UART_LOGS - DEBUG: Disable UART Logs
LOG_CONFIGURATION - DEBUG: Print detector configuration to UART
RESET_MODULE - Reset module, needed to make a new configuration

6.2.24 Application Id

Address Oxftff
Access Read Only
Register Type enum

© 2025 by Acconeer AB - All rights reserved Page 20 of 22

XM 125 I>C Cargo Example Application

\ Description | The application id register.
Enum Value
DISTANCE_DETECTOR | 1
PRESENCE_DETECTOR | 2
REF_APP_BREATHING | 3
EXAMPLE_CARGO 4

DISTANCE_DETECTOR - Distance Detector Application
PRESENCE _DETECTOR - Presence Detector Application
REF_APP_BREATHING - Breathing Reference Application
EXAMPLE_CARGO - Cargo Example Application

© 2025 by Acconeer AB - All rights reserved

Page 21 of 22

(o
< XM 125 I>C Cargo Example Application

7 Disclaimer

The information herein is believed to be correct as of the date issued. Acconeer AB (“Acconeer”) will not be responsible
for damages of any nature resulting from the use or reliance upon the information contained herein. Acconeer makes no
warranties, expressed or implied, of merchantability or fitness for a particular purpose or course of performance or usage
of trade. Therefore, it is the user’s responsibility to thoroughly test the product in their particular application to
determine its performance, efficacy and safety. Users should obtain the latest relevant information before placing orders.

Unless Acconeer has explicitly designated an individual Acconeer product as meeting the requirement of a particular
industry standard, Acconeer is not responsible for any failure to meet such industry standard requirements.

Unless explicitly stated herein this document Acconeer has not performed any regulatory conformity test. It is the user’s
responsibility to assure that necessary regulatory conditions are met and approvals have been obtained when using the
product. Regardless of whether the product has passed any conformity test, this document does not constitute any
regulatory approval of the user’s product or application using Acconeer’s product.

Nothing contained herein is to be considered as permission or a recommendation to infringe any patent or any other
intellectual property right. No license, express or implied, to any intellectual property right is granted by Acconeer

herein.

Acconeer reserves the right to at any time correct, change, amend, enhance, modify, and improve this document and/or
Acconeer products without notice.

This document supersedes and replaces all information supplied prior to the publication hereof.

a((oneer

© 2025 by Acconeer AB - All rights reserved Page 22 of 22

	Acconeer SDK Documentation Overview
	I2C Cargo Example Application
	I2C Address Configuration
	I2C Speed
	Usage
	Read App Status
	Writing a command
	Setup and Start Application

	Advanced Usage
	Debug UART logs
	Reset Module

	Register Protocol
	I2C Slave Address
	Protocol Byte Order
	I2C Write Register(s)
	I2C Read Register(s)

	Register Protocol - Low Power Mode
	I2C Communication with Low Power Mode

	File Structure
	Embedded Host Example
	Register Read/Write functions
	Application setup functions

	Registers
	Register Map
	Register Descriptions
	Version
	Protocol Status
	Measure Counter
	Actual Presence Update Rate
	Application Status
	Container Size
	Activate Utilization Level
	Utilization Signal Quality
	Utilization Threshold Sensitivity
	Activate Presence
	Presence Update Rate
	Presence Sweeps Per Frame
	Presence Signal Quality
	Presence Inter Detection Threshold
	Presence Intra Detection Threshold
	Result Header
	Utilization Distance
	Utilization Level Mm
	Utilization Level Percent
	Presence Detected
	Max Inter Presence Score
	Max Intra Presence Score
	Command
	Application Id

	Disclaimer

